
Neuro-Symbolic Concepts
for Robotic Manipulation

Jiayuan Mao

MIT CSAIL

jiayuanm@mit.edu

Towards Generalist Robots
Goal:
Having a robot that can do many tasks, across many environments.

Towards Generalist Robots
Goal:
Having a robot that can do many tasks, across many environments.

Towards Generalist Robots
Goal:
Having a robot that can do many tasks, across many environments.

Learning a single goal-conditioned policy for many tasks can be hard.
A promising direction is to combine model learning, reasoning, planning.

2D Images Robotic ManipulationDynamics and Causality 3D Scenes

Query: Pack the letter R to the
left of the E.

Query: Is there a dresser on the
left side of the cabinet?

Query: Which ball is responsible
to the cylinder collision?

Query: Is there a red sphere to
the left of the large sphere?

Neuro-Symbolic Concepts

orange set/set 𝜆x. filter(x, orange)

𝜆x𝜆y. relate(x, y, left)set\set/setleft

Word Syntax Semantics

filter(object_1, orange) = TRUE

relate(object_1, object_2, left) = FALSE

𝜆x𝜆y. action(x, y, move)action\set/setmove
Precondition: relate(cylin, hand, holding)
Postcondition: not(relate(cylin, hand, holding)) relate(cylin, bottle, left)

Visual representation
object_1
object_2

1

2

ORANGE

LEFT

Concept Representations

MOVE

Neuro-Symbolic Concepts

orange set/set 𝜆x. filter(x, orange)

𝜆x𝜆y. relate(x, y, left)set\set/setleft

Word Syntax Semantics

filter(object_1, orange) = TRUE

relate(object_1, object_2, left) = FALSE

𝜆x𝜆y. action(x, y, move)action\set/setmove
Precondition: relate(cylin, hand, holding)
Postcondition: not(relate(cylin, hand, holding)) relate(cylin, bottle, left)

Visual representation
object_1
object_2

1

2

Key Aspects of Representations:
Compositional.
Can be learned from little data.
Can support fast reasoning and planning.

ORANGE

LEFT

Concept Representations

MOVE

Task and Motion Planning for Robotics
Instruction: Put all food items in the fridge.
Initial State: in(Cabbage, Pot),

on(Potato, Table), ...

Task Plan:

Task and Motion Planning for Robotics

Task Plan:

Motion Plan:
Refine
+
Feedback

Photo Credit: Yang et al.
PIGINet: A Transformer-based Plan Feasibility Predictor for
Robotic Rearrangement in Geometrically Complex Environments.
RSS 2023 Poster on Wed. #29

Instruction: Put all food items in the fridge.
Initial State: in(Cabbage, Pot),

on(Potato, Table), ...

Basic Elements in Task and Motion Planning

action pick-place(o: object, p1: pose, p2: pose, g: grasp, t: traj)

pre: obj-at(p1), valid-trajectory(t, g, p1, p2)

eff: obj-at(p2)
 samplers: grasp samplers, trajectory samplers (e.g., RRT)

 controller: ...

• Basic predicates.

• These operators usually only models the object in contact.

• Basic operators: the transition models, samplers, controllers.

predicate is-food(o: object)

classifier: ...

predicate in(o: object, r: receptacle)
classifier: ...

Domain Specification

Parameter
Samplers

Transition
Models

Discrete + Continuous
Planning Algorithms

Basic Elements in Task and Motion Planning

Predicates
and Classifiers

State

“Put all food items into the
fridge.”

Goal

Action
move(...)

Many Difficult Choices Must Still Be Made
However, implementing such systems can be difficult:

• Where to grasp?
• How to move?
• How far?
• ...

• Where to grasp?
• Where to put?
• Any side-effects?

(e.g., hot item?)
• ...

• Where to grasp?
• Where to place

to be ...
• How to organize

the fridge?
• ...

Again, we want to solve these problems for many objects, for many tasks,
across many environments.

• Where to grasp?
• Where to place to be stable?
• Enough space for later items?
• Enough space for robot hand?
• Maybe need non-prehensile

manipulation?
• What will happen to the

cabbage?
• ...

Learning to Tackle These Challenges
• Task and motion planning is a general framework.
• Manually programming everything can be challenging, especially when
dealing with perception and continuous parameters.
• We are interested in learning to tackle these challenges, in particular,
learning neuro-symbolic representations for objects, relations, and actions.

How Should We Combine Learning and Planning
• We start from some understanding of a “base operators.”
• They are general, and hard to learn from little data.

• Then we can “specialize” these operators.
action paint(o: object, t: object, g: grasp, t: trajectory)

action use-hammer(o: object, r: object, g: grasp, t: trajectory)

action pouring(o: object, r: object, g: grasp, t: trajectory)
action open-cabinet-door(o: door, g: grasp, t: trajectory)

action sort-in-fridge(o: object, r: fridge, g: grasp, t: trajectory)
action place-in-pot(o: object, r: pot, g: grasp, t: trajectory)

......

action pick-place(o: object, p1: pose, p2: pose, t: traj): ...

The Objective of Learning
• Learning additional “transition models”
action paint(o: object, t: object, g: grasp, t: trajectory)
eff: if is-green-painter(t) and is-clean(o) then is-green(o)

action use-hook(o: object, r: object, g: grasp, t: trajectory)
eff: object-at(r, new-pose(...))

action pouring(o: object, r: object, g: grasp, t: trajectory)
eff: if has-water(o) then has-water(r)

• Learning samplers
action use-hook(o: object, r: object, g: grasp, t: trajectory)
sampler: t ~ trajectory-s(o, r, g)

action sort-in-fridge(o: object, r: fridge, g: grasp, t: trajectory)
sampler: pose_of_o ~ placement-s(o, r)

Pouring

Dense Packing

Paint-and-Sort

Tool Using

• In many cases you don’t need to learn new controllers.

PDSketch
Integrated Domain Programming, Learning, and Planning

• Manually programming everything can be challenging.
• However, humans are good at describing qualitative structural and causal
aspects of a domain.
• ML methods are good at learning detailed parametric models.
• We get great generalization and from very little training.

Jiayuan Mao, Tomas Lozano-Perez, Joshua B. Tenenbaum, Leslie Pack Kaelbling. NeurIPS 2022.

The Objective of Learning

State Space:
s.agent = (x, y, yaw)
s.objects[i] = (x, y, image)
Predicates
next_to(agent, object)
is_box(object)
......
Transition Model
def pick_place(s, o): ...

The Objective of Learning

State Space:
s.agent = (x, y, yaw)
s.objects[i] = (x, y, image)
Predicates
next_to(agent, object)
is_box(object)
......
Transition Model
def pick_place(s, o): ...

Target 1: Classifiers for predicates
Learning to classify objects and relations.
Samplers for certain relations (e.g., “in”)

The Objective of Learning

State Space:
s.agent = (x, y, yaw)
s.objects[i] = (x, y, image)
Predicates
next_to(agent, object)
is_box(object)
......
Transition Model
def pick_place(s, o): ...

Target 1: Classifiers for predicates
Learning to classify objects and relations.
Samplers for certain relations (e.g., “in”)

Target 2: Details in the transition model.
“How objects will be painted?”

action paint(o: object, p1: pose, p2: pose, t: traj)
pre: obj-at(p1), valid-trajectory(t, p1, p2)
eff: obj-at(p2)

 forall b:
 if in(o, b) and ?f(o, b):
 o.color = ?g(o, b)

action pick-place(o: object, p1: pose, p2: pose, t: traj)

pre: obj-at(p1), valid-trajectory(t, p1, p2)

eff: obj-at(p2)

Specializes

Combining Human “Sketch” and Learning

Goal: Paint all blocks red
and put them into the box.

action paint(o, p1, p2, t)
 forall b:
 if in(o, b) and ?f(o, b):
 o.color = ?g(o, b)

Agentt
(x, y, r)

Objectst[0]
(x=..., y=...,
 image=...)

Objectst[1]
(x=..., y=...,
 image=...)

...

Combining Human “Sketch” and Learning

action paint(o, p1, p2, t)
 forall b:
 if in(o, b) and ?f(o, b):
 o.color = ?g(o, b)

Agentt
(x, y, r)

Objectst[0]
(x=..., y=...,
 image=...)

Objectst[1]
(x=..., y=...,
 image=...)

...

Combining Human “Sketch” and Learning

in ?f
...

action paint(o, p1, p2, t)
 forall b:
 if in(o, b) and ?f(o, b):
 o.color = ?g(o, b)

Agentt
(x, y, r)

Objectst[0]
(x=..., y=...,
 image=...)

Objectst[1]
(x=..., y=...,
 image=...)

...

Combining Human “Sketch” and Learning

in ?f
...

and

action paint(o, p1, p2, t)
 forall b:
 if in(o, b) and ?f(o, b):
 o.color = ?g(o, b)

Agentt
(x, y, r)

Objectst[0]
(x=..., y=...,
 image=...)

Objectst[1]
(x=..., y=...,
 image=...)

...

Combining Human “Sketch” and Learning

in ?f
...

&?g

*

Objectst+1
(x=..., y=...,
 image=...)

Back
Prop

Predicted
Object State

Each ?? can be implemented as a
neural network module.
Humans “sketch” out the structure,
and ML fills in the gaps.

Learning Continuous Parameters

action place-in(o: object, r: receptacle)
 p1 = s.pose[o]
sample p2 ~ sample_in(o, r)

 sample t ~ sample_trajectory(o, p1, p2)

pick-place(o, p1, p2, t)

action pick-place(o: object, p1: pose, p2: pose, t: traj)

pre: obj-at(p1), valid-trajectory(t, p1, p2)

eff: obj-at(p2)

Specializes
Goal: Paint all blocks red
and put them into the box.

Learning Continuous Parameters

action place-in(o: object, r: receptacle)
 p1 = s.pose[o]
sample p2 ~ sample_in(o, r)
sample t ~ sample_trajectory(o, p1, p2) # RRT

pick-place(o, p1, p2, t)

action pick-place(o: object, p1: pose, p2: pose, t: traj)

pre: obj-at(p1), valid-trajectory(t, p1, p2)

eff: obj-at(p2)

Specializes
Goal: Paint all blocks red
and put them into the box.

Learning Continuous Parameters
sample_in(o, r)

shapeo

shaper

poser

fshape

fshape

fpose

g poseo

(pos, ori)

(pos, ori)

Can be implemented by any specific generative models (e.g., Diffusion).
In PDSketch, models are learned from expert demonstrations.

Full robot movement models.
Need to learn object classifiers.

Abstract robot models.
(With ??)

GNNs.
(Weakest prior)

Behavior Cloning 0.79
Decision Xformer 0.82
DreamerV2 0.79
PDS-Base 0.62
PDS-Abs 0.98
PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Rob PDS-BasePDS-Abs

PDS-Base
Learned
PDS-Abs

Learning and Planning Efficiency

Environment from: Chevalier-Boisvert et al. 2019.

Abstract robot models.
(With Structures)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

Very small amount of prior
knowledge significantly
improves the data efficiency.

Learning and Planning Efficiency

Abstract robot models.
(With Structures)

Behavior Cloning 0.79
Decision Xformer 0.82
DreamerV2 0.79
PDS-Base 0.62
PDS-Abs 0.98
PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

The performance in model
learning also translates to
better performance.

Learning and Planning Efficiency

Abstract robot models.
(With Structures)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

The factored representation
yields domain-independent
heuristics which improves
planning efficiency.

PDS-Base
Learned
PDS-Abs

Learning and Planning Efficiency
• Suppose an action has two preconditions.
• E.g., to paint an object, it should be both clean and dry.
• Solve two planning problems separately, and “add” the costs together.
• Such strategy generalizes to neuro-symbolic models of the transition models.

∃x.y. purple(x) & yellow(y) &
 inbox(x) & inbox(y) & left-of(x, y) ∀x. yellow(x) & inbox(x)

Trained on goals: ∃x.y.color(x)&color(y)&rel(x, y) Positions, number of objects, colors vary.

Planning with Learned Models and Samplers

Domain Model in PDSketch

Predicates
and Classifiers

Parameter
Samplers

Transition
Models

PDSketch
Integrated Domain Programming, Learning, and Planning

A framework that combines program “sketches” and learning for learning domain models.
It uses neuro-symbolic representation to improve data-efficiency in learning.
It leverages symbolic structures of the transition model for faster planning.

Learning Everything from Scratch Is
Unscalable

Domain Model in PDSketch

Predicates
and Classifiers

Parameter
Samplers

Transition
Models

The neuro-symbolic, modularized system enables learning from different data streams.

Leveraging “Foundation Models” for
Predicates

Domain Model in PDSketch

Predicates
and Classifiers

Parameter
Samplers

Transition
Models

Modular Integration with “Foundation Models”

‘put the heart in the hole’

ProgPort: Programmatically Grounded, Compositionally Generalizable Robotic Manipulation
Wang*, Mao*, Hsu, Zhao, Wu, Gao. In ICLR 2023.

Predicates
in(object, object)
is_heart(object)
is_hole(object)

Object Recognition
Directly leverage pretrained CLIP.

Object Relations
Learn classifiers + samplers.

“Pack the apple into the plate”

“Pack the peach into the bowl”

Learning Samplers from Videos

Domain Model in PDSketch

Predicates
and Classifiers

Parameter
Samplers

Transition
Models

Learning Samplers from Videos

Step 1
img1 img2 img3 img4img0 (input)

Synthesized
Video

Step 2

Object Pose
& Robot Command

Step 3
(Flow + Depth)

q1 q2 q3 q4

Input

St
at

e
D

ep
th

Pick up the
blue bowlG

oa
l : Video Pred.

: Flow Est.

: SE(3) Est.
Computed

Optical Flowflow1 flow2 flow3 flow4

• Leveraging video prediction and flow estimation to reconstruct object
motion in manipulation videos.
• Enables learning from video datasets for samplers for articulated objects,
tool using, etc.

Learning to Act from Actionless Video through Dense Correspondences
Ko*, Mao*, Du, Sun, Tenenbaum. In Submission 2023.

Learning Transition Models from LLMs

Domain Model in PDSketch

Predicates
and Classifiers

Parameter
Samplers

Transition
Models

Learning Transition Models from LLMs

Inst: Get me a sliced
piece of bread.

action slice(o, k, ...)
pre: holding(k)

is-knife(k),
...

eff: sliced(o)

• PDSketch leverages symbolic structures in transition models.
• We can leverage large language models propose those structures for us,
and perform learning for details and samplers.

To slice something,
you should use a knife.

Learning Grounded Hierarchical Planning Skills From Language
Wong*, Mao*, Sharma*, et al. In preparation 2023.

Neuro-Symbolic Concepts

ORANGE

LEFT

orange set/set 𝜆x. filter(x, orange)

𝜆x𝜆y. relate(x, y, left)set\set/setleft

Word Syntax Semantics Concept Representations

filter(object_1, orange) = TRUE

relate(object_1, object_2, left) = FALSE

MOVE𝜆x𝜆y. action(x, y, move)action\set/setmove
Precondition: relate(cylin, hand, holding)
Postcondition: not(relate(cylin, hand, holding)) relate(cylin, bottle, left)

Visual representation
object_1
object_2

1

2

Neuro-symbolic concepts can be combined through reasoning and planning algorithms to
solve tasks across domains and modalities.
Its modular nature enables data-efficient learning from various data streams.
Its symbolic structure enables interpretable, and also, faster reasoning and planning.

Towards Generalist Robots

