

Building Generalist Robots with Integrated Learning and Planning

Jiayuan Mao

Towards Generalist Robots

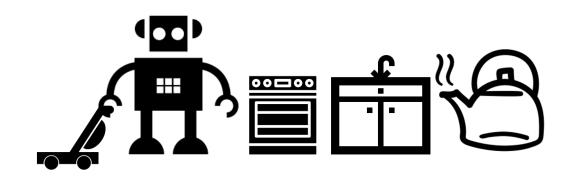
Goal:

Having a robot that can do many tasks, across many environments.

Towards Generalist Robots

Goal:

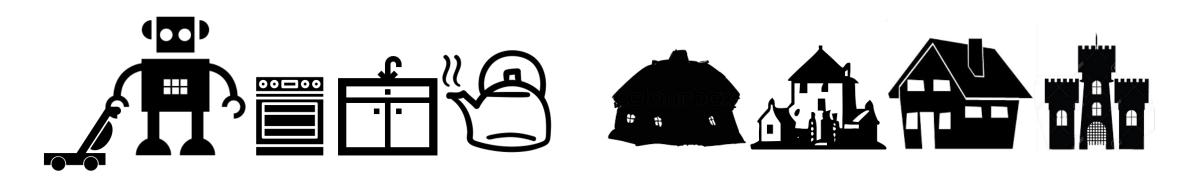
Having a robot that can do <u>many tasks</u>, across many environments.



Towards Generalist Robots

Goal:

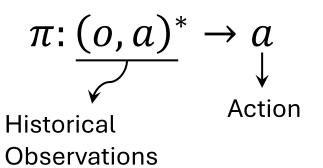
Having a robot that can do many tasks, across many environments.

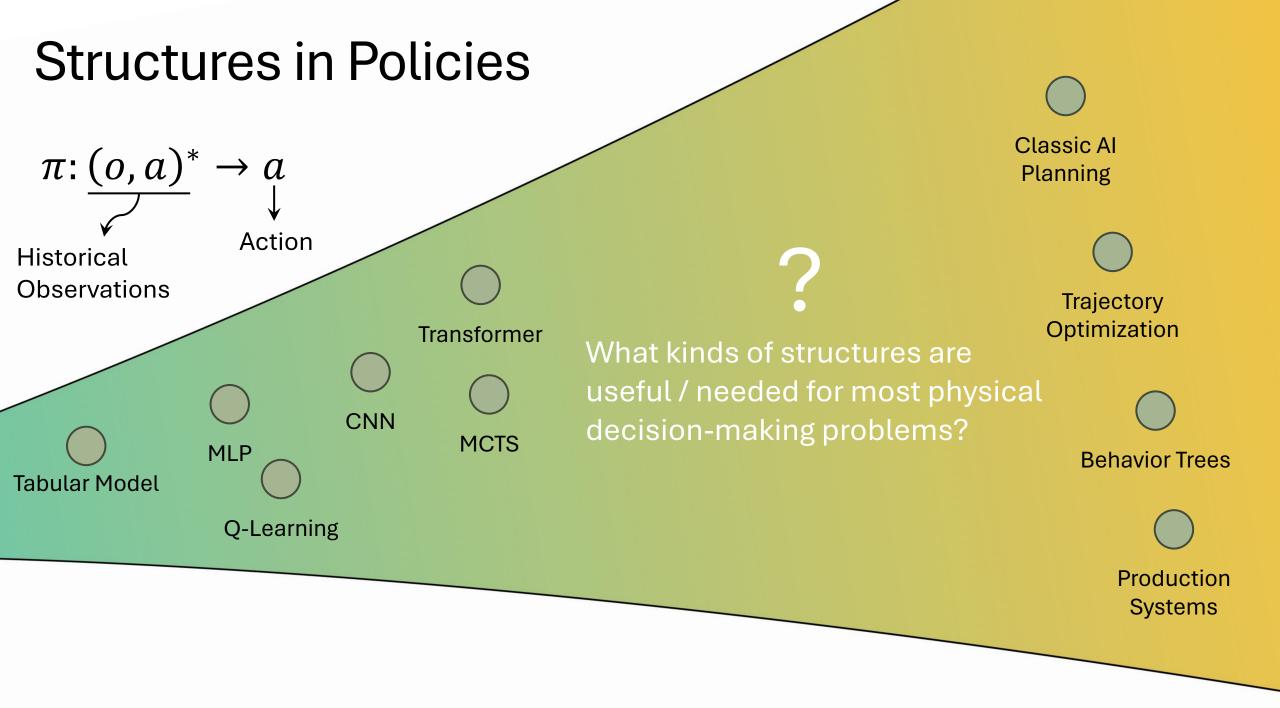


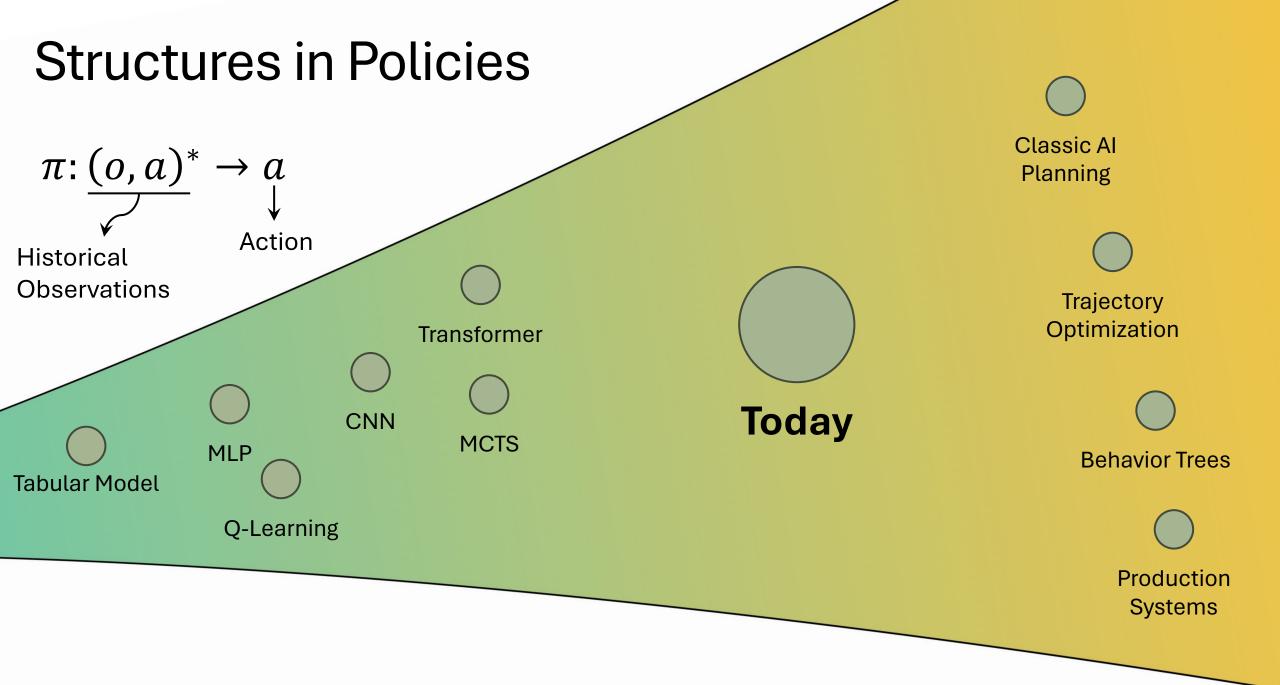
The robot should make long-horizon plans with rich contact with the environment, and generalize to unseen objects, states, and goals.

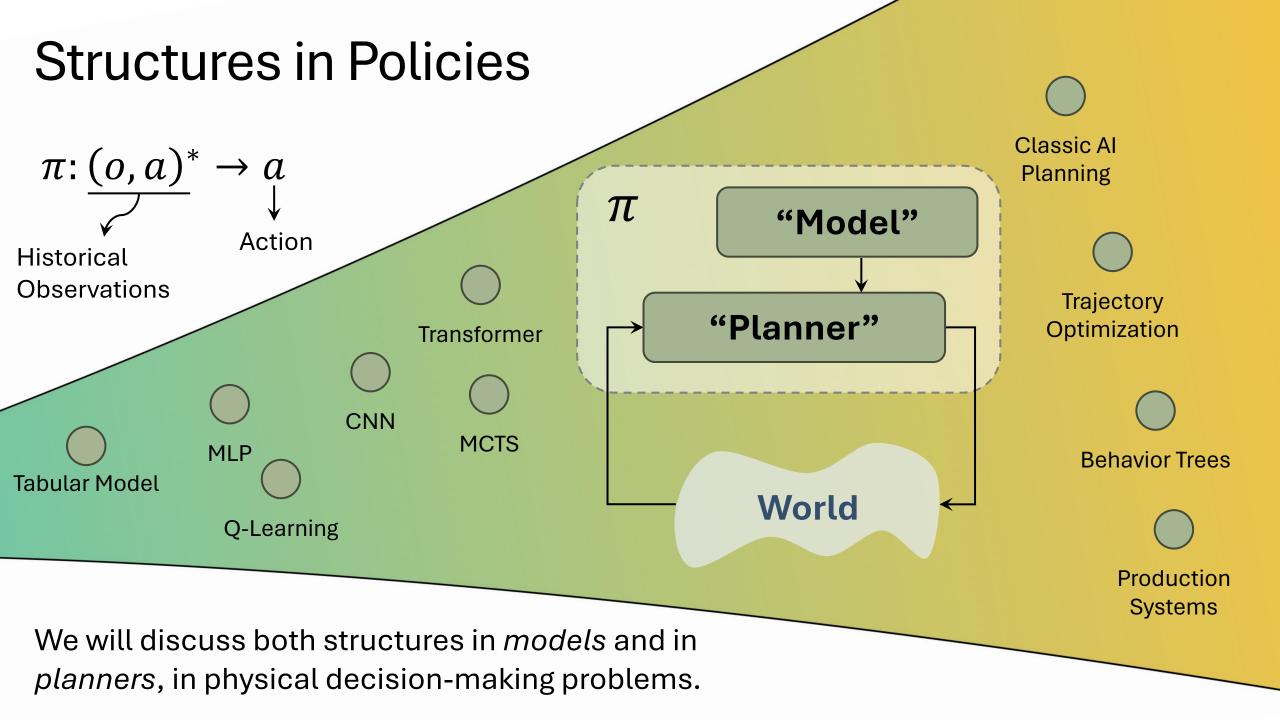
We want to achieve generalizations from a feasible amount of data.

Structures in Policies

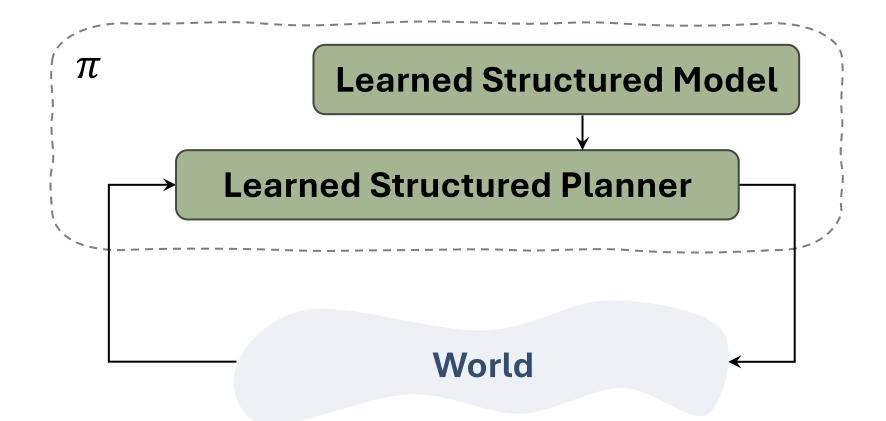








Learning Structured Representations



What structures in *models* and in *planners* do we need? How do they improve our efficiency in learning and planning? How will they help us achieve the goal of aggressive generalizations?

An "Old" Idea —— Task and Motion Planning

Instruction: Put all food items in the fridge. Initial State: in(Cabbage, Pot), on(Potato, Table), ...

Task Plan:

 \bigcirc 1 Open the left fridge door

(2) Remove the pot lid

3 Move the cabbage from pot to fridge

(4) Move potato to fridge

An "Old" Idea —— Task and Motion Planning

Instruction: Put all food items in the fridge. Initial State: in(Cabbage, Pot), on(Potato, Table), ...

→ Task Plan:

Refine

Open the left fridge door

(2) Remove the pot lid

3 Move the cabbage from pot to fridge

4 Move potato to fridge

Basic Elements in Planning

• Basic predicates.

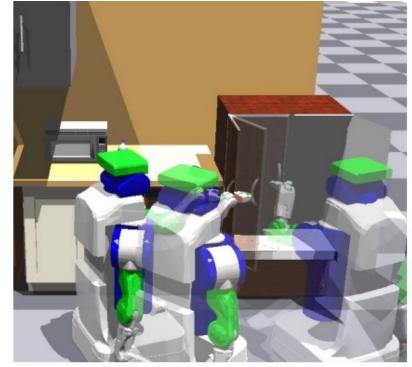
```
predicate is-food(o: object)
    classifier: ...
predicate in(o: object, r: receptacle)
    classifier: ...
```

• Basic operators: preconditions, effects, and controllers.

```
action pick-up(o: object, p1: pose, g: grasp, t: trajectory)
pre: obj-at(p1), valid-trajectory(t, g, p1)
eff: holding(o)
controller: ...
```

Why Should We Factorize the Problem This Way?

Key Idea: Build Compositional Abstractions.



States are described using (state abstraction) :

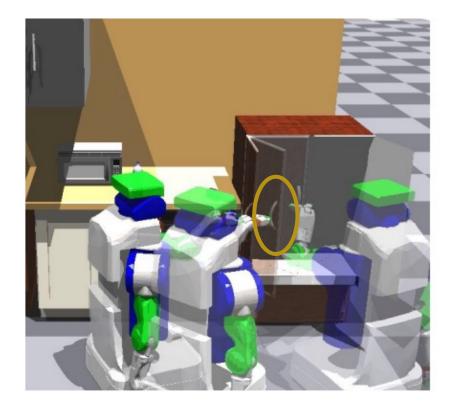
- on(potato, table)
- door-state(fridge)

And they can be composed to form new concepts "all food in fridge."

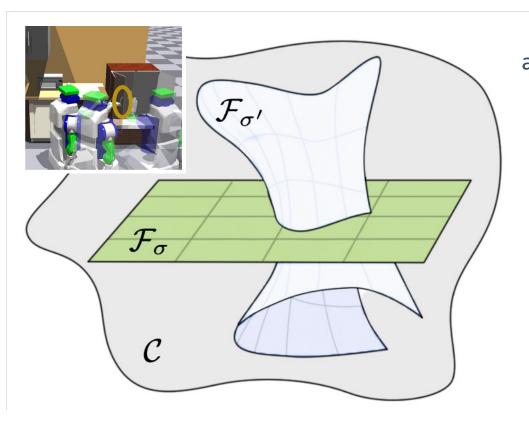
Actions are described using (temporal abstraction):

- open(door, degree, trajectory)
- grasp(object, pose, approaching-trajectory)
 And they can be sequentially or hierarchically composed.

Compositional abstraction brings **sparsity** and **temporal decomposition**.

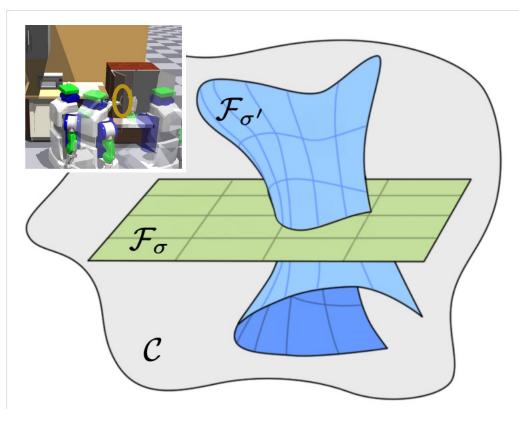


Compositional abstraction brings **sparsity** and **temporal decomposition**. Models are sets of low-dimensional manifolds in the configuration space.



action move-to-grasp(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)
eff: robot-at(t[-1]), holding(o, g)
controller: ...

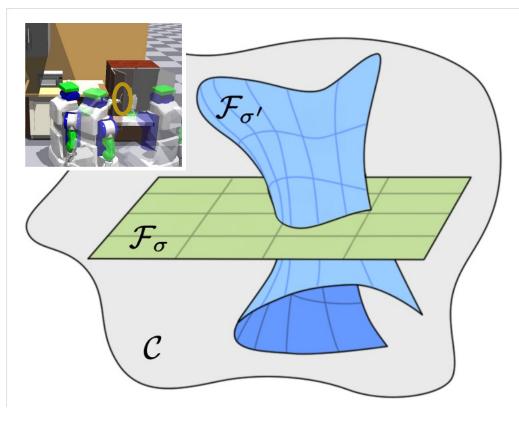
Compositional abstraction brings **sparsity** and **temporal decomposition**. Models are sets of low-dimensional manifolds in the configuration space.



action move-to-grasp(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)
eff: robot-at(t[-1]), holding(o, g)
controller: ...

action move-while-holding(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), holing(o, g), valid-obj-t(o, t)
eff: robot-at(t[-1]), obj-at(...)
controller: ...

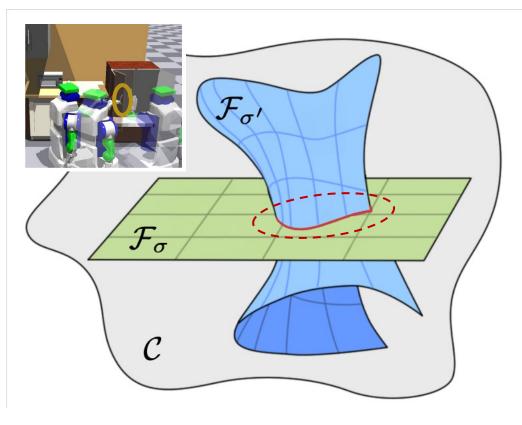
Compositional abstraction brings **sparsity** and **temporal decomposition**. Models are sets of low-dimensional manifolds in the configuration space. They are connected at regions modeled by preconditions and effects.



action move-to-grasp(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)
eff: robot-at(t[-1]), holding(o, g)
controller: ...

action move-while-holding(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), holing(o, g), valid-obj-t(o, t)
eff: robot-at(t[-1]), obj-at(...)
controller: ...

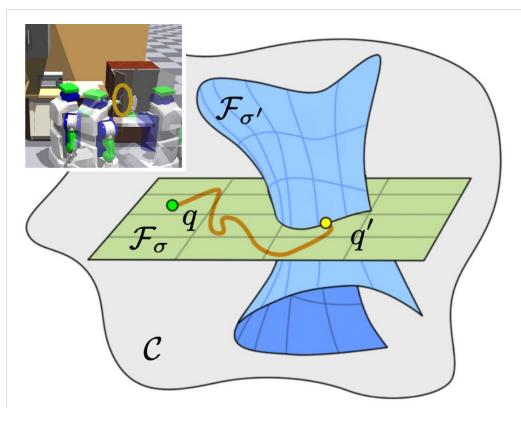
Compositional abstraction brings **sparsity** and **temporal decomposition**. Models are sets of low-dimensional manifolds in the configuration space. They are connected at regions modeled by preconditions and effects.



action move-to-grasp(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)
eff: robot-at(t[-1]), holding(o, g)
controller: ...

action move-while-holding(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), holing(o, g), valid-obj-t(o, t)
eff: robot-at(t[-1]), obj-at(...)
controller: ...

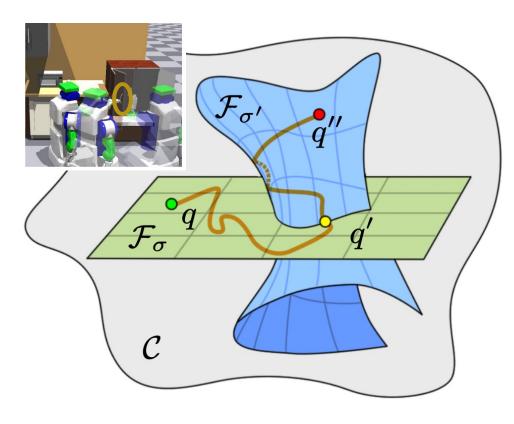
Compositional abstraction brings **sparsity** and **temporal decomposition**. Models are sets of low-dimensional manifolds in the configuration space. They are connected at regions modeled by preconditions and effects.



action move-to-grasp(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)
eff: robot-at(t[-1]), holding(o, g)
controller: ...

action move-while-holding(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), holing(o, g), valid-obj-t(o, t)
eff: robot-at(t[-1]), obj-at(...)
controller: ...

Compositional abstraction brings **sparsity** and **temporal decomposition**. Models are sets of low-dimensional manifolds in the configuration space. They are connected at regions modeled by preconditions and effects.



```
action move-to-grasp(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)
eff: robot-at(t[-1]), holding(o, g)
controller: ...
```

action move-while-holding(o: obj, g: grasp, t: traj)
pre: robot-at(t[0]), holing(o, g), valid-obj-t(o, t)
eff: robot-at(t[-1]), obj-at(...)
controller: ...

Task and Motion Planning is General, But ...

There are a lot of details to be filled in:

•

1 Open the left fridge door

(2) Remove the pot lid

- Where to grasp?
- How to move?
- How far?
- ...

- Where to grasp?
- Where to put?
- Any side-effects? (e.g., hot item?)

- 3 Move the cabbage from pot to fridge
- Where to grasp?
- Where to place to be stable?
- Enough space for later items?
- Enough space for robot hand?
- Maybe need non-prehensile manipulation?
- What will happen to the cabbage?

• ...

4 Move potato to fridge

- Where to grasp?
- Where to place to be ...
- How to organize the fridge?

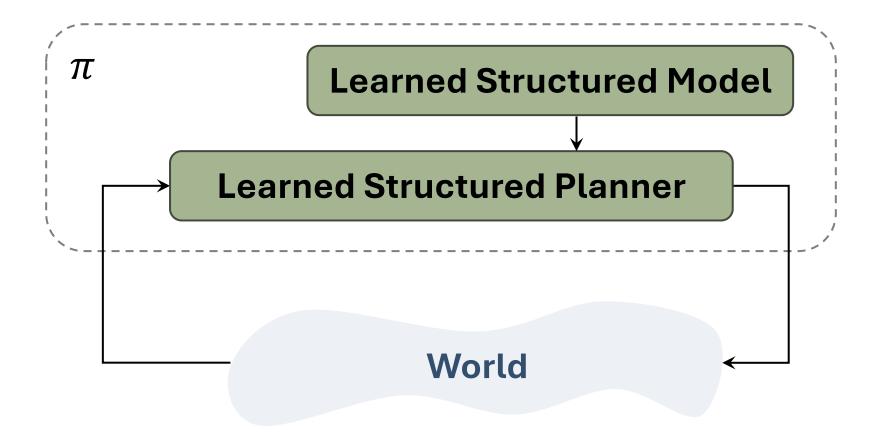
• ...

Let's Add Learning to Tackle These Challenges

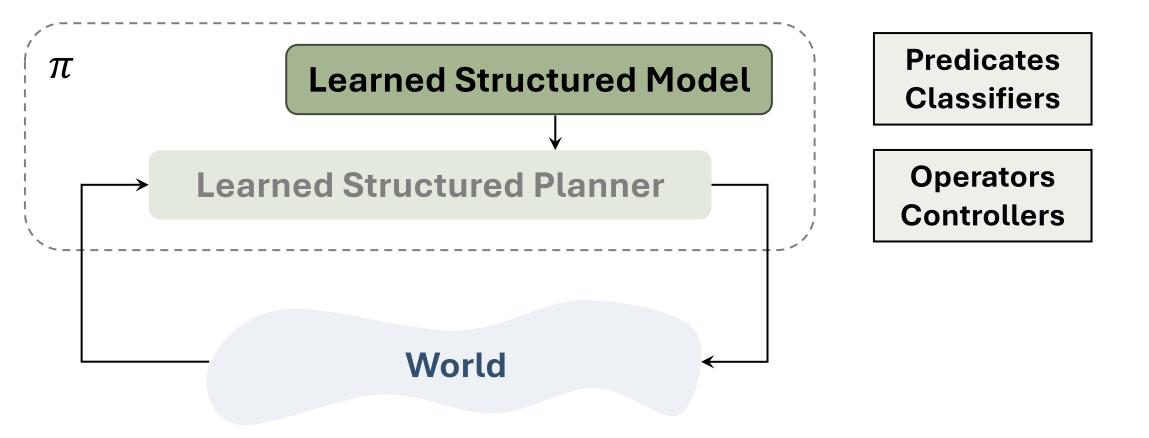
- Task and motion planning is a general framework.
- Manually programming everything can be challenging, especially when dealing with perception and continuous parameters.
- We are interested in learning to tackle these challenges, in particular, learning structured representations for both the model and the planner.

PDSketch: Integrated Domain Programming, Learning, and Planning. *Mao*, Lozano-Perez, Tenenbaum, Kaelbling. 2022. Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, *Mao*, Hagenow, Shah. 2024.

Learning Structured Representations

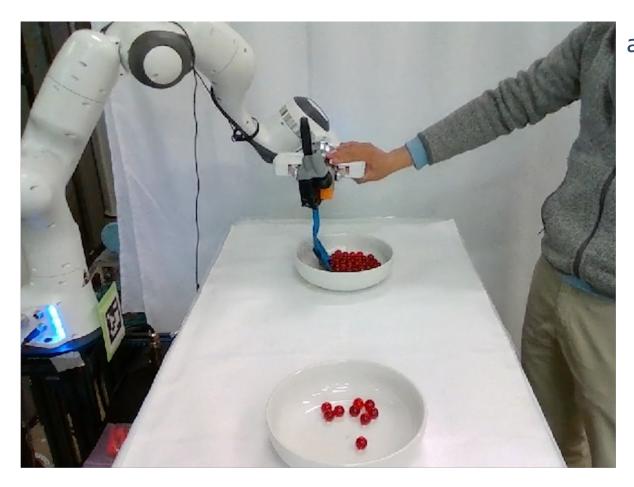


Learning Structured Representations for Models

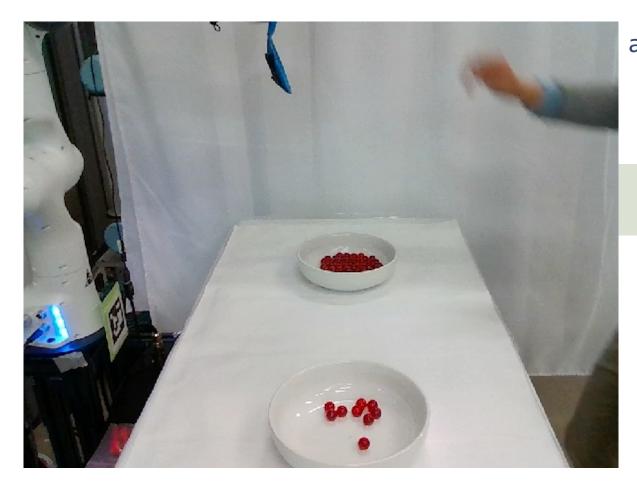


• Model each "skill" as a sequence of *intra-mode movements and intermode transitions, with parameters.*

• Model each "skill" as a sequence of *intra-mode movements and intermode transitions, with parameters.*

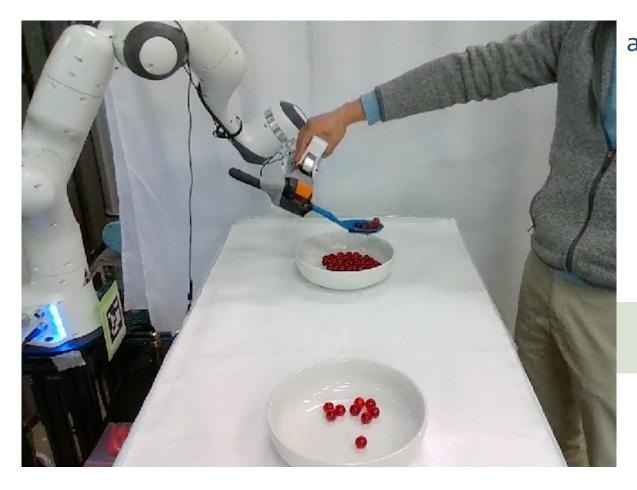


• Model each "skill" as a sequence of *intra-mode movements and intermode transitions, with parameters.*



• Model each "skill" as a sequence of *intra-mode movements and intermode transitions, with parameters.*

• Model each "skill" as a sequence of *intra-mode movements and intermode transitions, with parameters.*



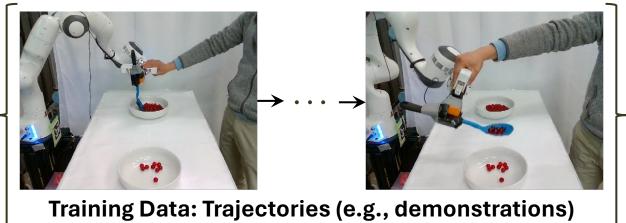
• Model each "skill" as a sequence of *intra-mode movements and intermode transitions, with parameters.*



```
action scoop(from, to, tool):
 precondition: holding(tool), empty(tool)
                contains-marble(from)
 body:
    # move to the bowl to scoop from
    move(tool, from)
    # scoop the piles
    move-with-contact(tool, from)
    # move to the bowl to drop the piles
    move(tool, to)
    # drop the piles
    move(tool)
 effects: marble-update(from)
           marble-update(to)
```

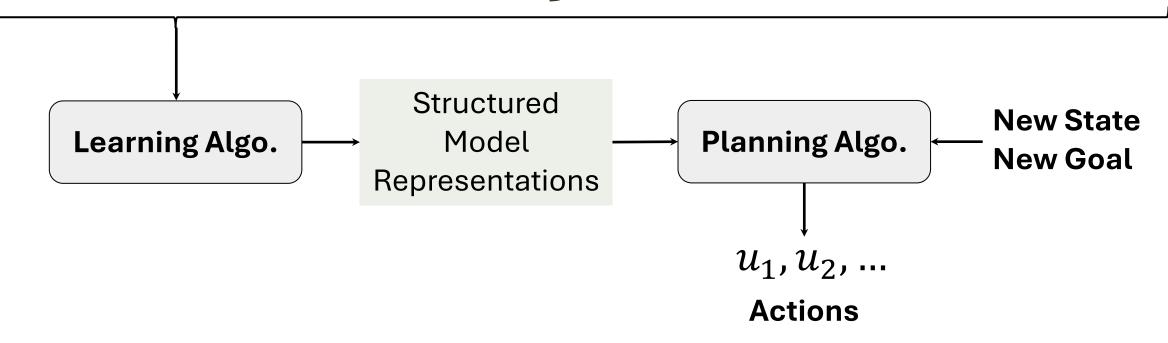
PDSketch

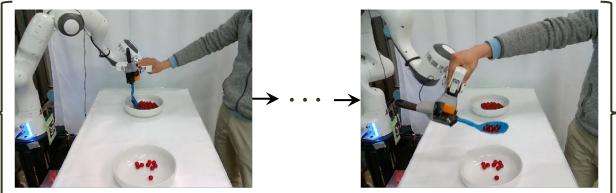
Integrated Domain Programming, Learning, and Planning



```
action scoop(from, to, tool):
    precondition: ...
    body: ...
    effect: ...
```

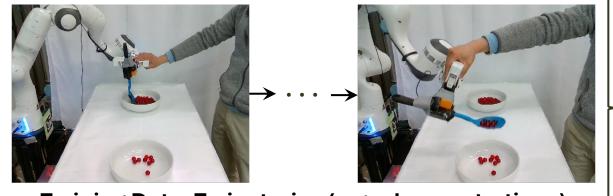
Programmatic Definition (from Humans or LLMs)





Training Data: Trajectories (e.g., demonstrations)

body: move(tool, from) move-with-contact(tool, from) move(tool, to) move(tool) effects: marble-update(from) marble-update(to)

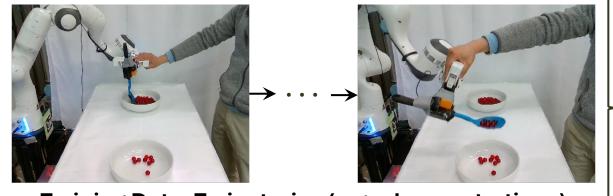


Training Data: Trajectories (e.g., demonstrations)

Target 1: Classifiers for predicates Learning to classify objects and relations.

```
body:
```

```
move(tool, from)
move-with-contact(tool, from)
move(tool, to)
move(tool)
effects: marble-update(from)
marble-update(to)
```



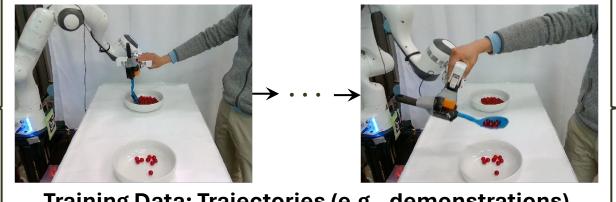
Training Data: Trajectories (e.g., demonstrations)

body:

```
move(tool, from)
move-with-contact(tool, from)
move(tool, to)
move(tool)
effects: marble-update(from)
marble-update(to)
```

Target 1: Classifiers for predicates. Learning to classify objects and relations.

Target 2: Controllers for sub-actions.

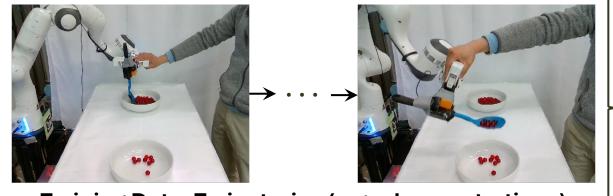


Training Data: Trajectories (e.g., demonstrations)

Target 1: Classifiers for predicates. Learning to classify objects and relations.

Target 2: Controllers for sub-actions.

Target 3: Transition models.



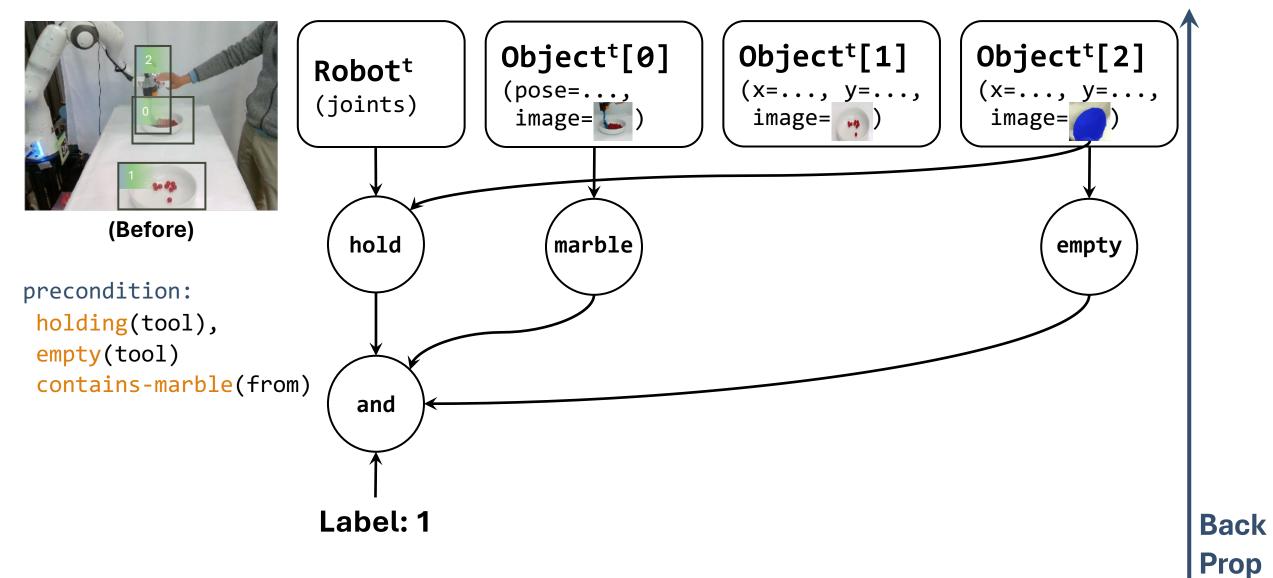
Training Data: Trajectories (e.g., demonstrations)

Target 1: Classifiers for predicates Learning to classify objects and relations.

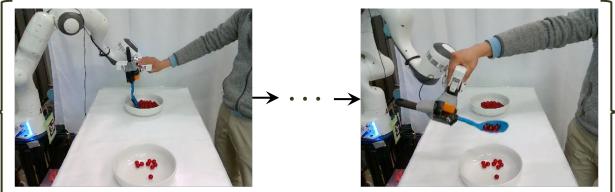
```
body:
```

```
move(tool, from)
move-with-contact(tool, from)
move(tool, to)
move(tool)
effects: marble-update(from)
marble-update(to)
```

Learning Classifiers by Evaluating Preconditions



The Objective of Learning

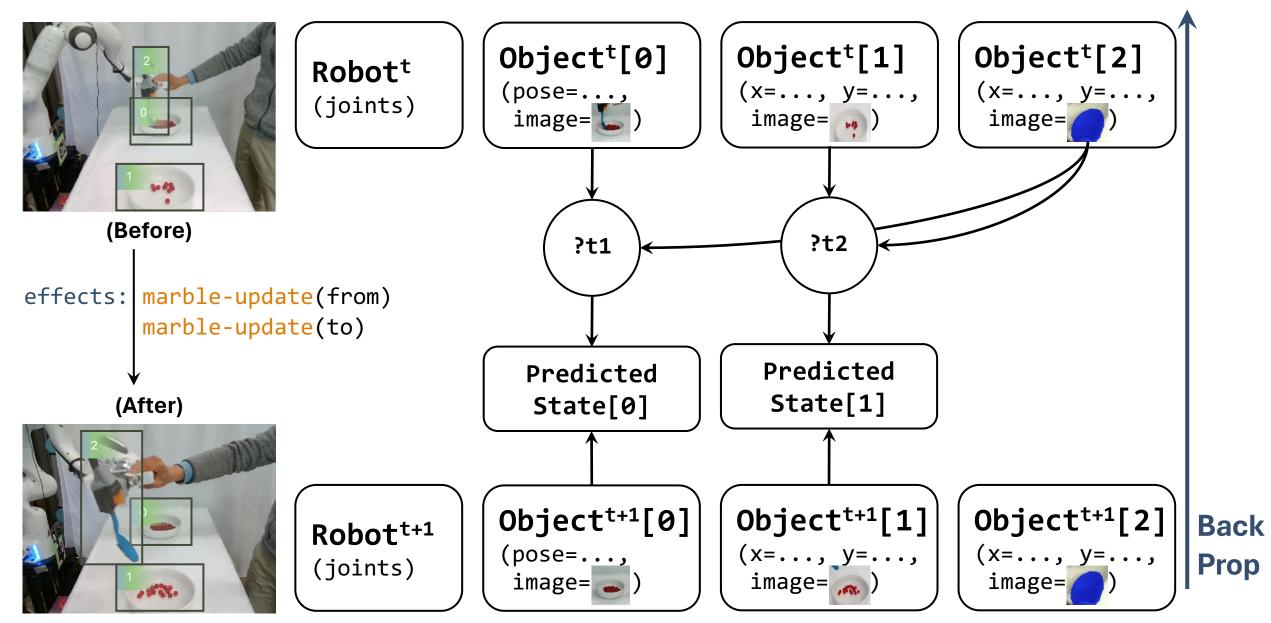


Training Data: Trajectories (e.g., demonstrations)

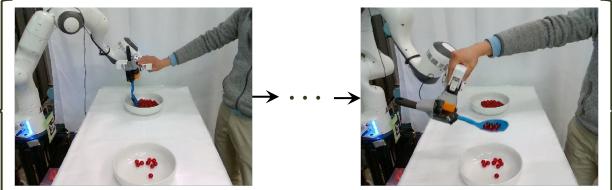
body: move(tool, from) move-with-contact(tool, from) move(tool, to) move(tool) effects: marble-update(from) marble-update(to)

Target 3: Transition models.

Learning Transitions with Self-Supervision



The Objective of Learning



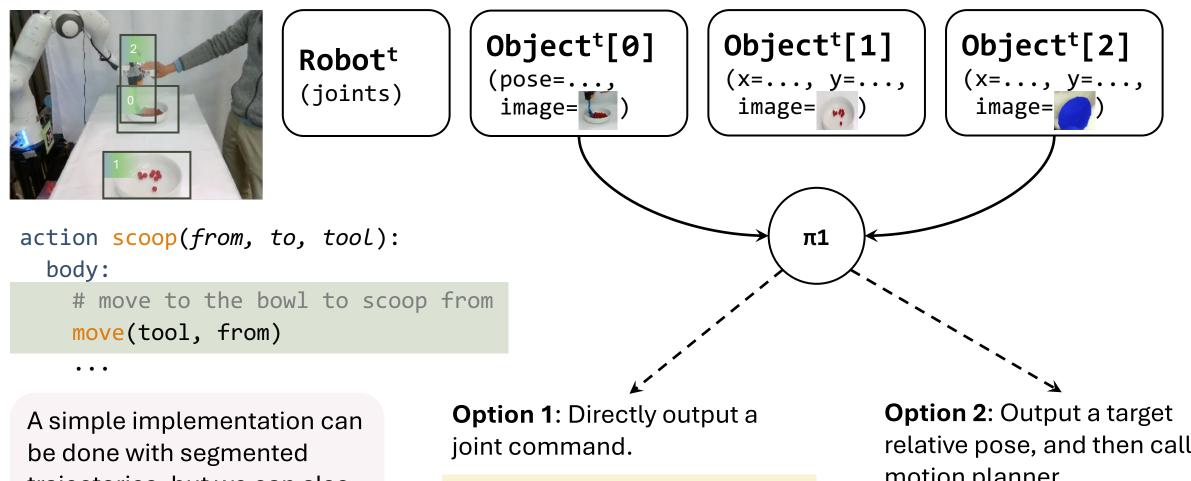
Training Data: Trajectories (e.g., demonstrations)

body:

```
move(tool, from)
move-with-contact(tool, from)
move(tool, to)
move(tool, to)
effects: marble-update(from)
marble-update(to)
```

Target 2: Controllers for sub-actions.

Learning Continuous Parameters or Controllers



- trajectories, but we can also jointly learn to segment them.
 - +: Most general. Does not rely on any prior knowledge.
 - -: Poor generalization for unseen configurations and obstacles.

relative pose, and then call a motion planner.

- -: Need additional knowledge.
- +: Better generalization for unseen configurations and obstacles.

PDS-Rob

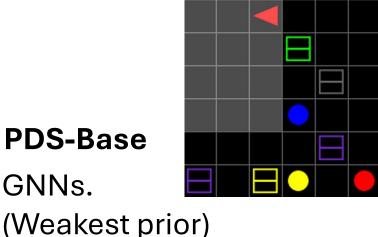
Full robot movement models. Need to learn object classifiers. (With ??)

PDS-Abs

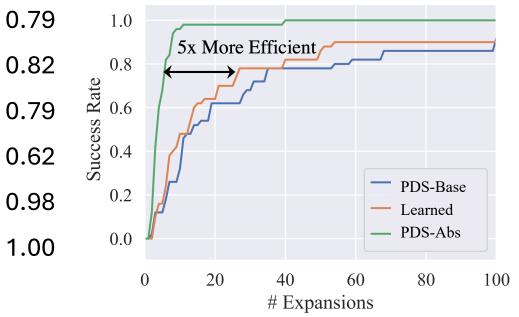
Abstract robot models.

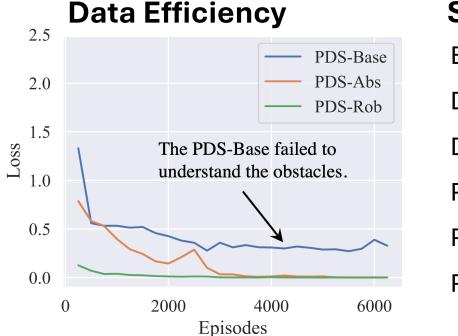
PDS-Base

GNNs.



Planning Efficiency



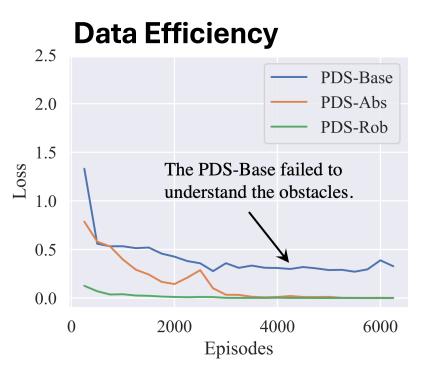


Success Rate

Behavior Cloning Decision Xformer DreamerV2 **PDS-Base** PDS-Abs PDS-Rob

Environment from: Chevalier-Boisvert et al. 2019.

PDS-Abs Abstract robot models. (With Structures)



Success Rate

Very small amount of prior knowledge significantly improves the *data efficiency*.

PDS-Base PDS-Abs

DS-Rob

Planning Efficiency

Expansions

PDS-Abs Abstract robot models. (With Structures)

Data Efficiency

Success Rate

Behavior Cloning	0.79
Decision Xformer	0.82
DreamerV2	0.79
PDS-Base	0.62
PDS-Abs	0.98
PDS-Rob	1.00

Planning Efficiency

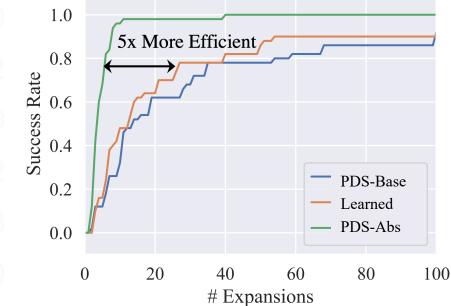
The performance in model learning also translates to *better performance*.

- Suppose an action has two preconditions.
- Solve two planning problems separately, and "add" the costs together.
- This usually gives a good estimate of the cost-to-go.
- Such strategy generalizes to structured neural models.
 Plan



The factored representation yields domain-independent heuristics which improves *planning efficiency*.

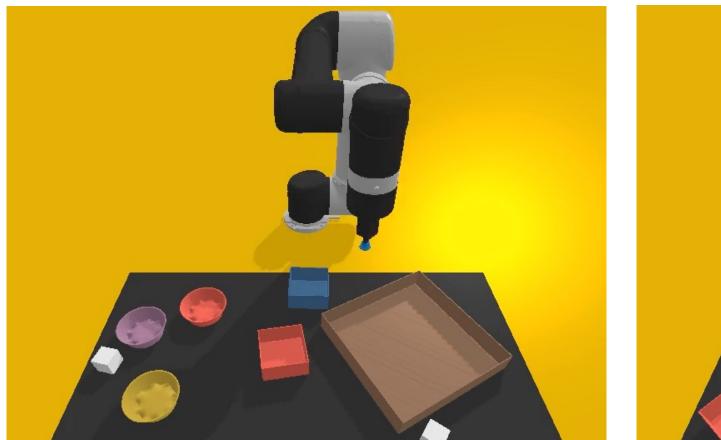
> PDS-Abs PDS-Rob



Generalization to Unseen States and Goals

Trained on goals: $\exists x.y.color(x)\&color(y)\&rel(x, y)$ Positions, number of objects, colors vary.

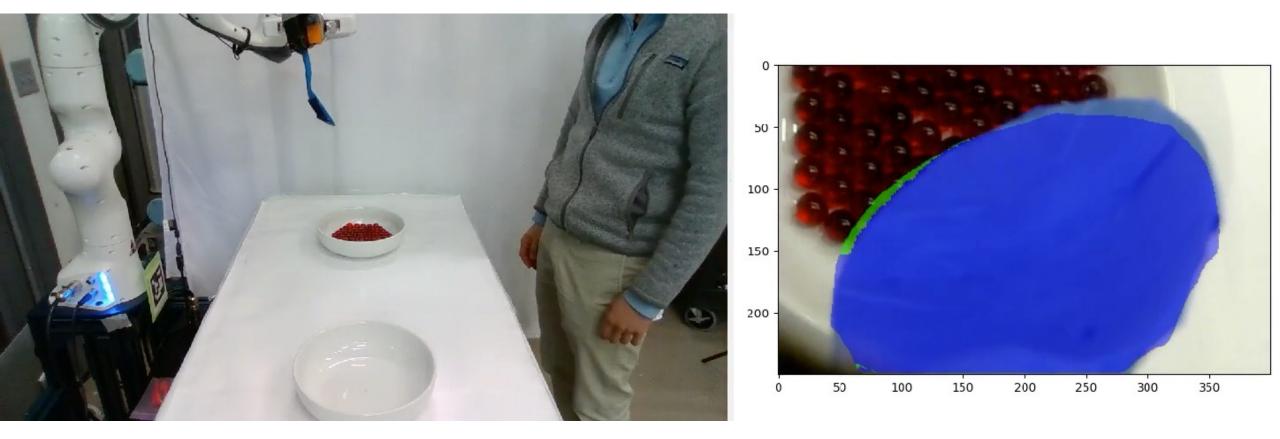
∃x.y. purple(x) & yellow(y) & inbox(x) & inbox(y) & left-of(x, y)



 $\forall x. yellow(x) \& inbox(x)$

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. 2022.

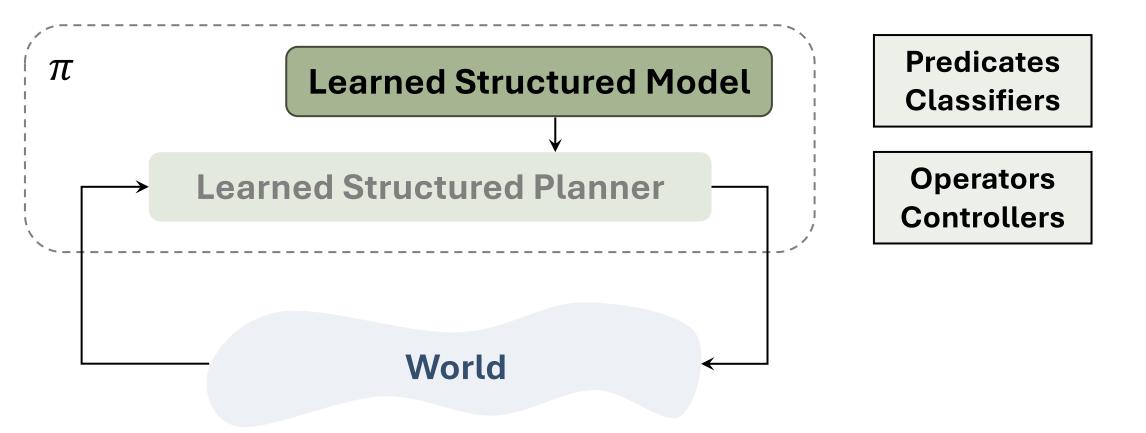
Robust under Local and Global Perturbation



- Explicitly learned mode classifiers and transition rules enables online re-planning.
- Using motion planners enables generalization in "getting back to pre-scoop poses."

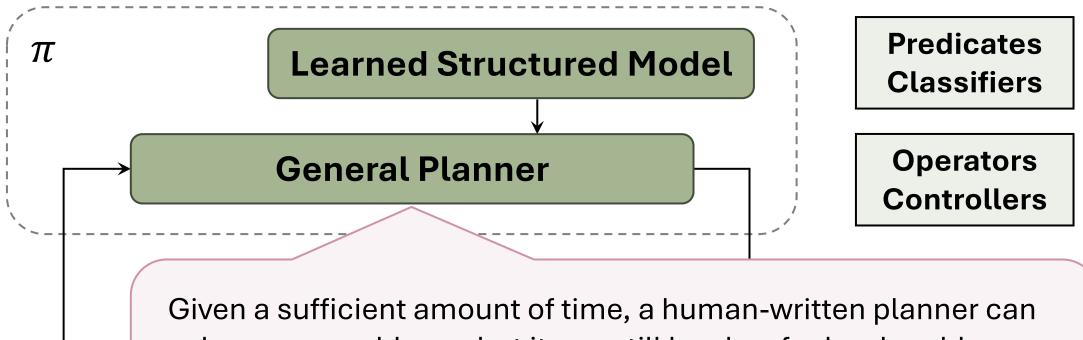
* Trained with 17 human-collected demonstrations. Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. 2024.

Learning Structured Representations for Models



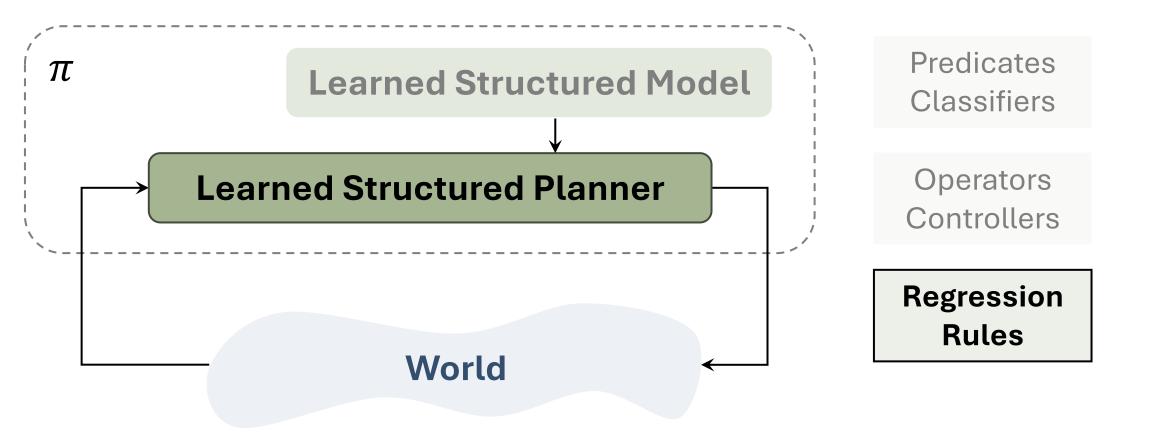
Factorization and sparsity structures improves learning and planning efficiency. Temporal structures supports generalization to unseen goals and states.

Learning Structured Representations for Models



solve many problems, but it can still be slow for hard problems. Now let's look into how we can make planning even faster, by learning **search guidance**.

Learning Structured Representations for Planners



What Can We Learn from One Demonstration?

Learning Reusable Manipulation Strategies. *Mao*, Lozano-Perez, Tenenbaum, Kaelbling. 2022.

What Can We Learn from One Demonstration?

A "strategy" for picking up the cylinder.

- Push to rotate.
- Exert force on one end so that it tilts.
- Move the bucket.

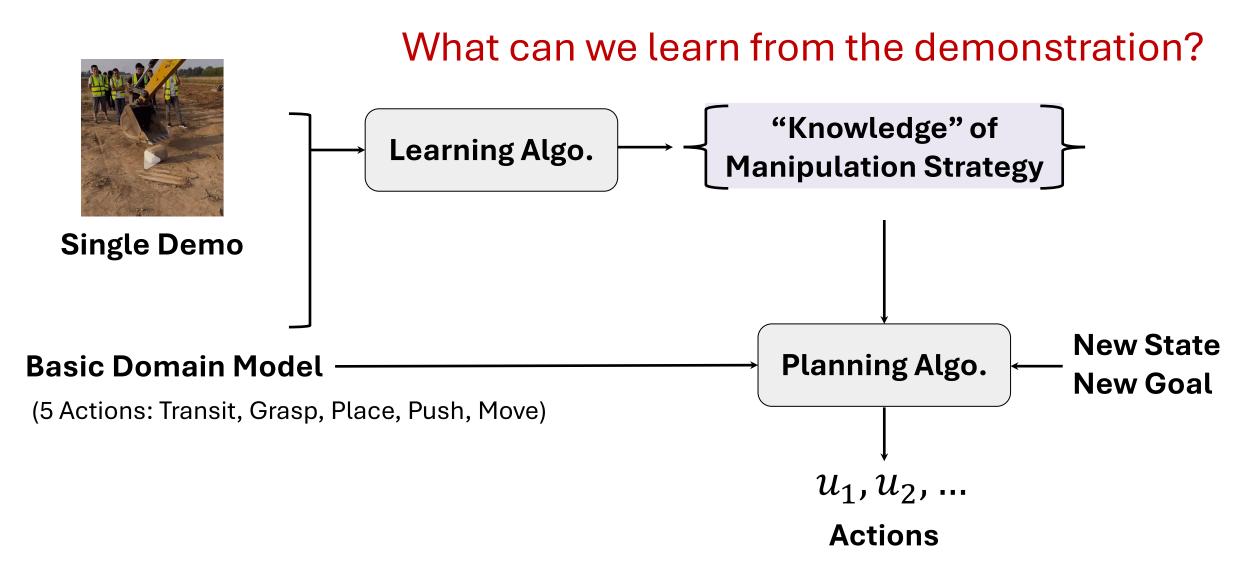
You might not be able to execute it robustly now, but you have some "ideas."

We aim to learn such "strategies" from a single demonstration and apply them compositionally.

Learning Reusable Manipulation Strategies. *Mao*, Lozano-Perez, Tenenbaum, Kaelbling. 2022.

Problem Formulation

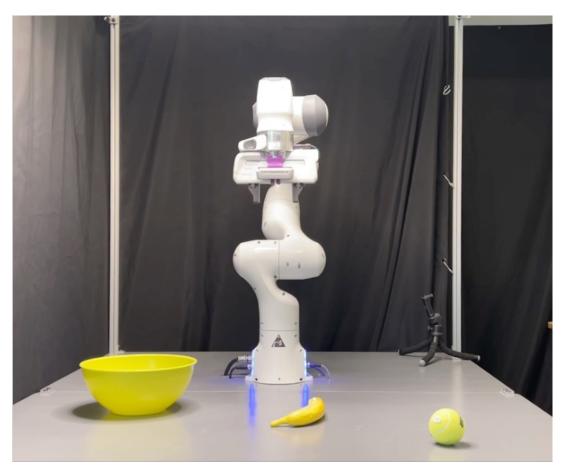
We have a basic model for object manipulation & one demonstration.

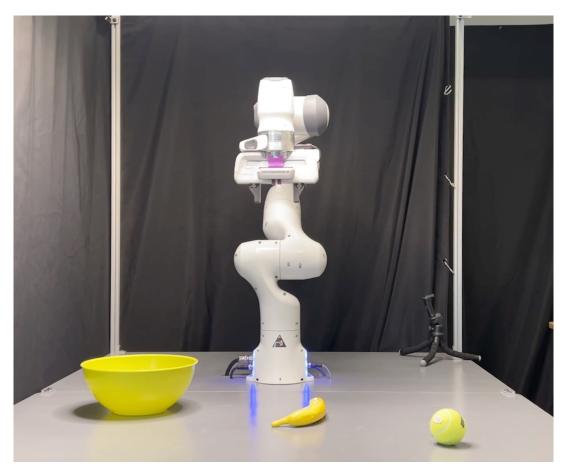


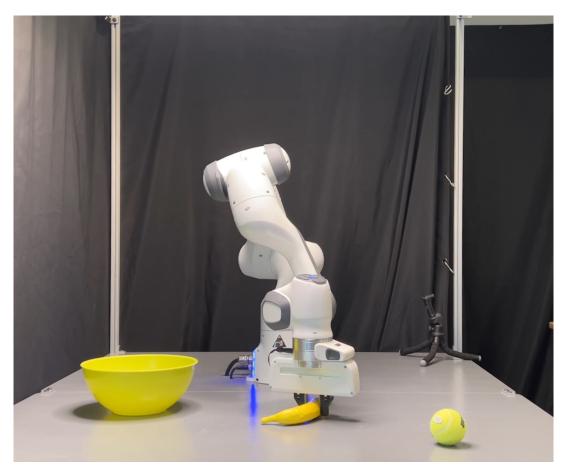
What Can We Learn from One Demonstration?

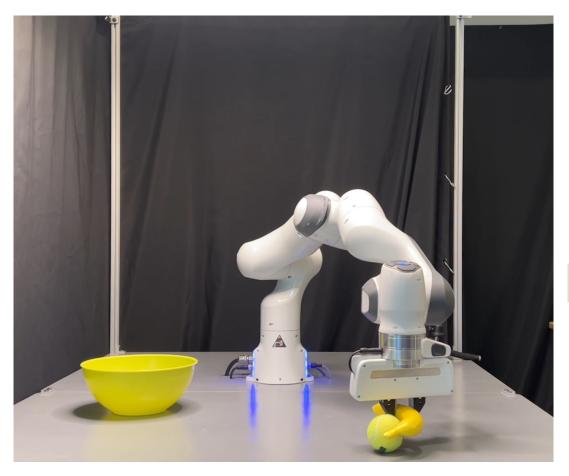
Key idea: some manipulation "strategies" can be modeled by a sequence of subgoals about contacts among objects.

Let's talk about a familiar example: hook-using.

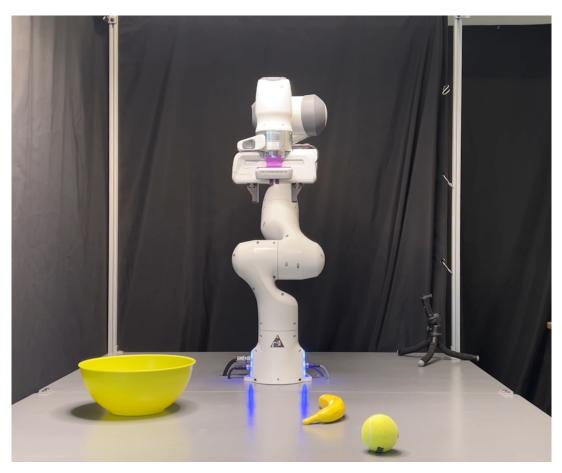








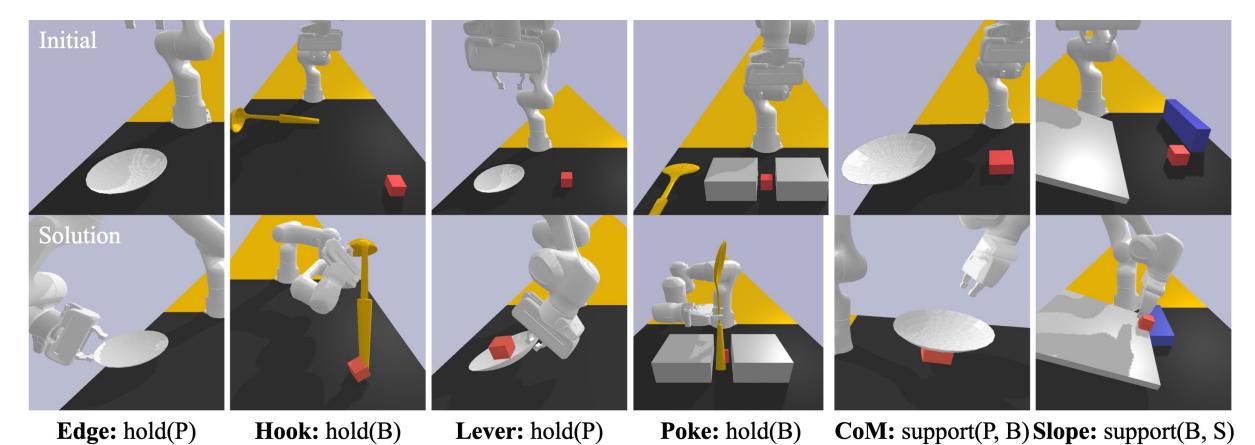
Key idea: some manipulation "strategies" can be modeled by a sequence of subgoals about contacts among objects.



Previously we were learning causal models of actions and plans with them. Now we can memorize "partial solutions" as shortcuts.

Many Strategies Can Be Represented This Way

We call these manipulation strategies "mechanisms."



Many Strategies Can Be Represented This Way

We call these manipulation strategies "mechanisms."

Mechanisms as sequence of contact mode families generalizes.

We learn these mechanisms, and we compose them.

Edge: hold(P)

Hook: hold(B)

.ever: hold(P)

P) Poke: ho

CoM: support(P, B) Slope: support(B, S

Overview of the Framework

There are two **learning problems**:

- 1. Learning of the contact mode sequence.
- 2. Learning samplers for parameters of the contact modes: where to grasp, how to move, *etc*.

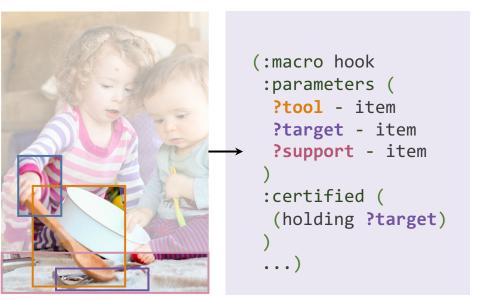
Overview of the Framework

There are two learning problems:

1. Learning of the contact mode sequence.

We will recover it from the single demonstration.

2. Learning samplers for parameters of the contact modes: where to grasp, how to move, *etc*.



Single Demo Contact Modes and Goals

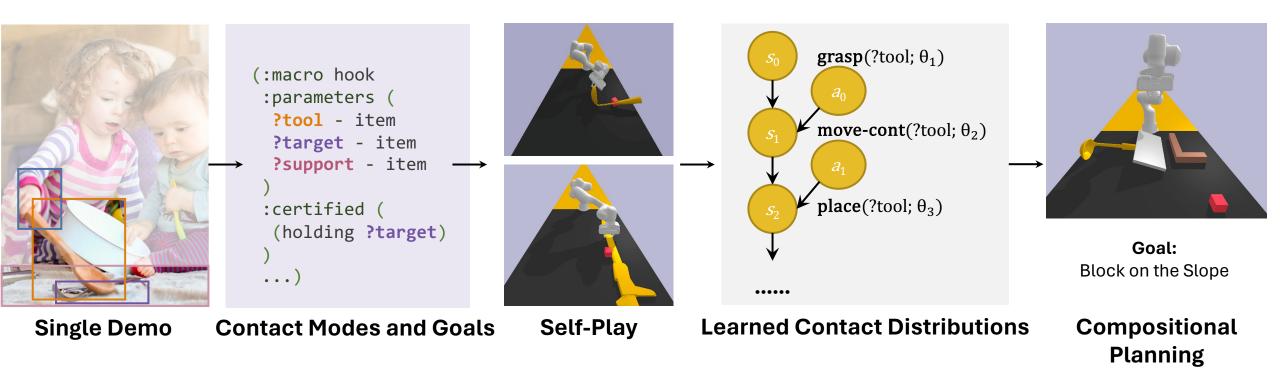
Overview of the Framework

There are two learning problems:

1. Learning of the contact mode sequence.

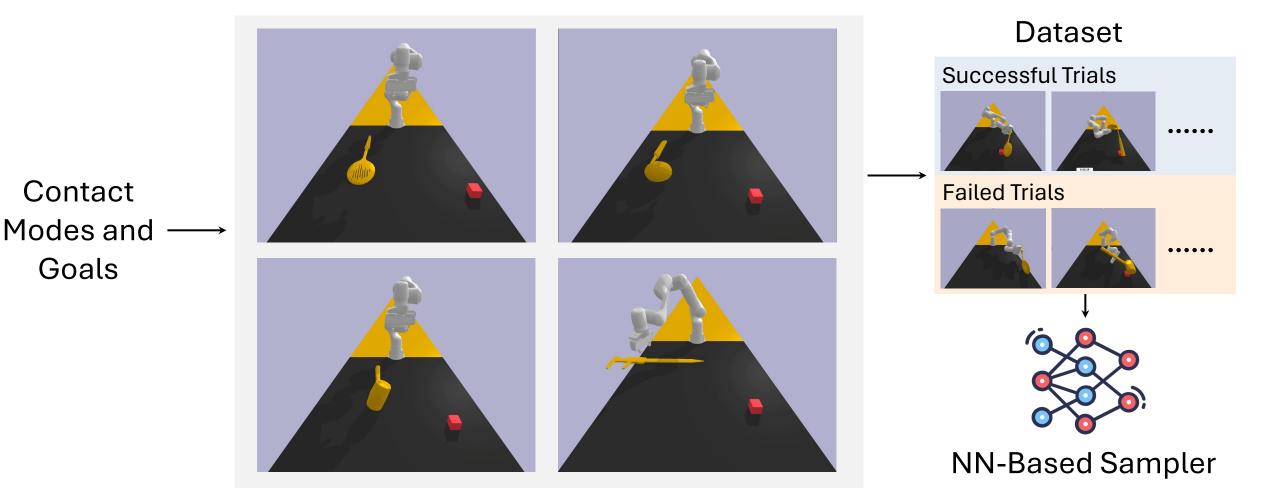
We will recover it from the single demonstration.

2. Learning samplers for parameters of the contact modes: where to grasp, how to move, *etc*.



Step 2: Learn Mechanism-Specific Samplers

We will learn those samplers (parameter generators) from self-plays.

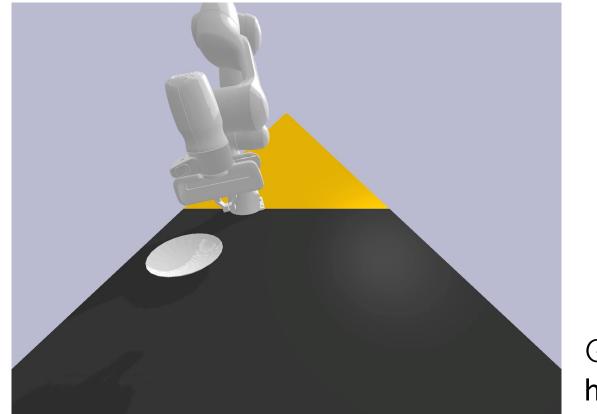


Self-Play with Randomly Sampled Objects and Poses

Learning Mechanisms Improves Efficiency

Method	Edge	Hook	Lever	Poking	СоМ	Slope&Blocker
Basis Ops Only	$89.45{\scriptstyle\pm5.53}$	>600	$523.18{\scriptstyle\pm9.22}$	>600	$19.30{\pm}2.82$	>600
Ours (Macro+Sampler)	0.57 ±0.05	3.84 ±1.56	$1.55{\pm}0.29$	97.76 ±10.67	0.97 ±0.09	4.11 ± 0.94

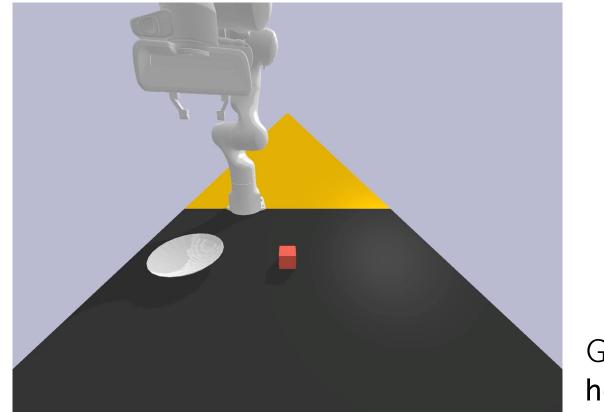
Learning Mechanisms Improves Planning Efficiency



Goal: holding(plate)

Method	Edge	Hook	Lever	Poking	СоМ	Slope&Blocker
Basis Ops Only	$89.45{\scriptstyle\pm5.53}$	>600	$523.18{\scriptstyle\pm9.22}$	>600	$19.30{\pm}2.82$	>600
Ours (Macro+Sampler)	0.57 ±0.05	3.84 ±1.56	$1.55{\pm}0.29$	97.76 ±10.67	0.97 ±0.09	4.11 ± 0.94

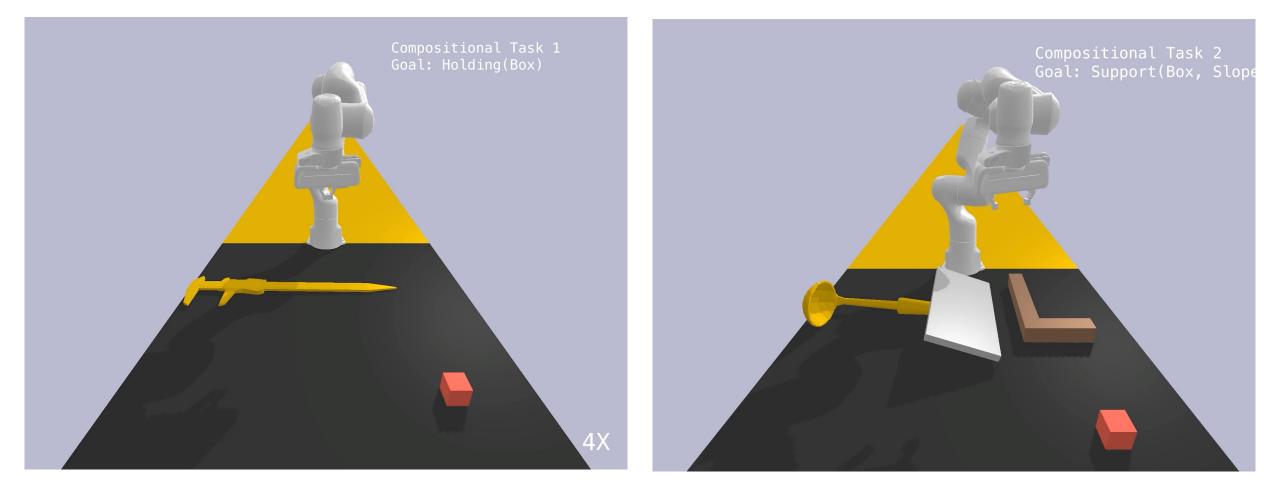
Learning Mechanisms Improves Planning Efficiency



Goal: holding(plate)

Method	Edge	Hook	Lever	Poking	СоМ	Slope&Blocker
Basis Ops Only	$89.45{\scriptstyle\pm5.53}$	>600	$523.18{\scriptstyle\pm9.22}$	>600	$19.30{\pm}2.82$	>600
Ours (Macro+Sampler)	0.57 ±0.05	3.84 ±1.56	$1.55{\pm}0.29$	97.76 ±10.67	0.97 ±0.09	4.11 ± 0.94

Composing Mechanisms Automatically by Planning



Goal: holding(box) The caliper is too flat to be grasped.

Goal: on(box, ramp) Box may slide down the ramp.

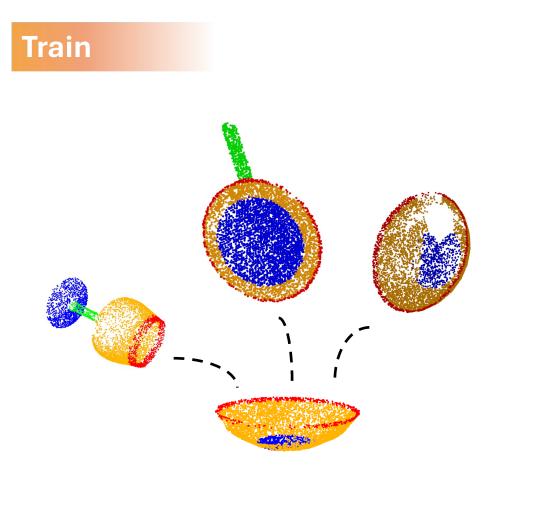
Real Robot Execution of the Learned Strategies

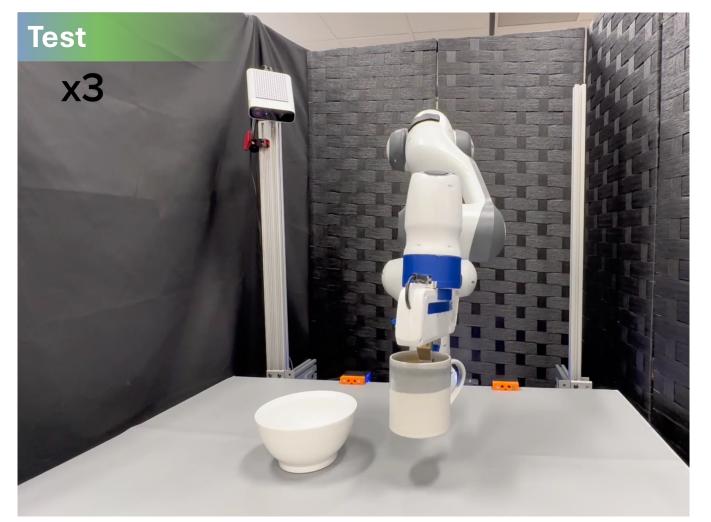
Goal: in(cube, cup)

Generalization to new tools, with no 3D model required. We apply our structured model and planner based on point cloud inputs.

Extension Beyond Rigid-Body Contacts

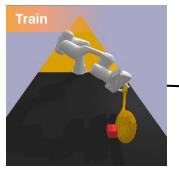
Trained on glasses, bowls, and frypans. Generalize to mugs.

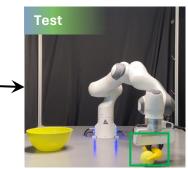


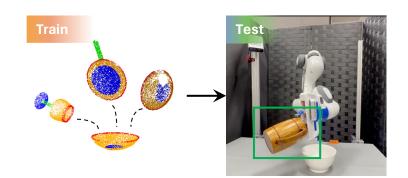


Composable Part-Based Manipulation. Liu, Mao, Hsu, Hermans, Garg, Wu. CoRL 2023.

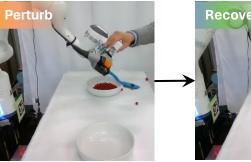
Generalization to Novel Objects



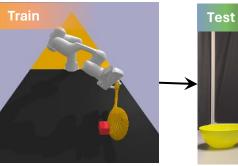




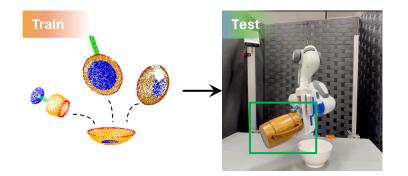
Generalization to Novel States



Generalization to Novel Objects

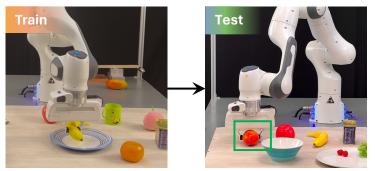






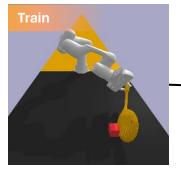
Generalization to Novel States

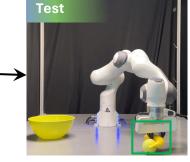
Generalization to Novel Words

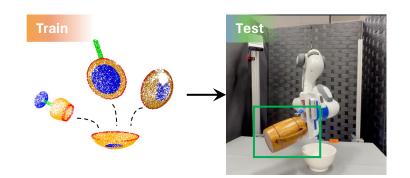


By factorizing action controller learning and visual recognition of objects (using CLIP), we can zero-shot generalize to instructions with unseen words.

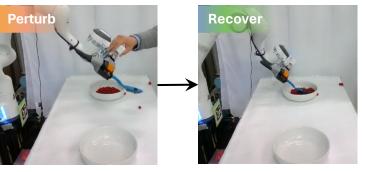
Generalization to Novel Objects



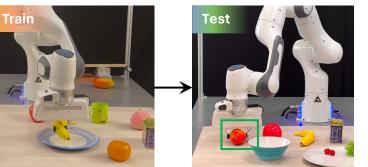




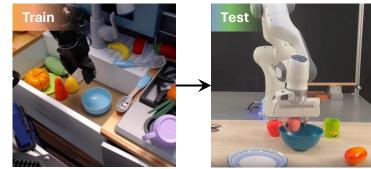
Generalization to Novel States



Generalization to Novel Words

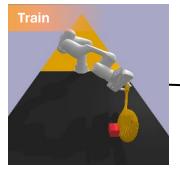


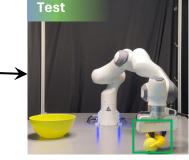
Generalization to Novel Embodiments

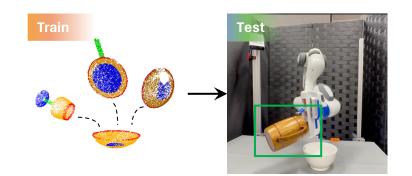


By factorizing the robot controller and the generation of object trajectories, we can train policies on videos of other robots and even humans, and deploy on a different robot.

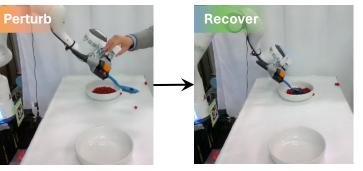
Generalization to Novel Objects



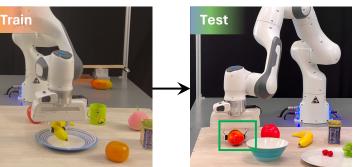




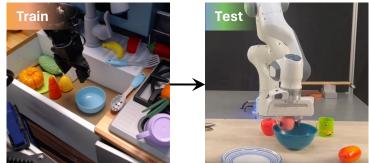
Generalization to Novel States



Generalization to Novel Words



Generalization to Novel Embodiments



Interpretation of Under-Specified Goals

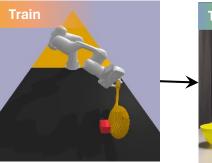
Set up a table for my breakfast.

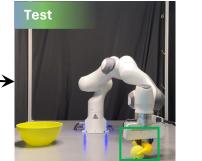
By factorizing goals into finer-grained object relationships using LLMs, we build systems that can interpret under-specified human goals.

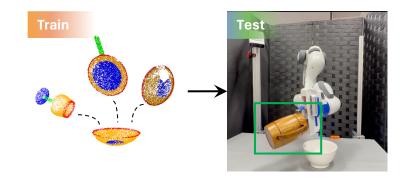
Principles: Compositional abstractions for

- states (objects, relations, and sparse transition models), and
- actions and plans (hierarchical compositions and decompositions)

enable data-efficient learning, faster planning, and better generalization.

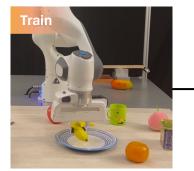


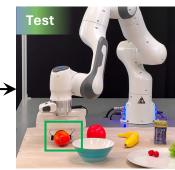




Generalization to Novel States

Generalization to Novel Words

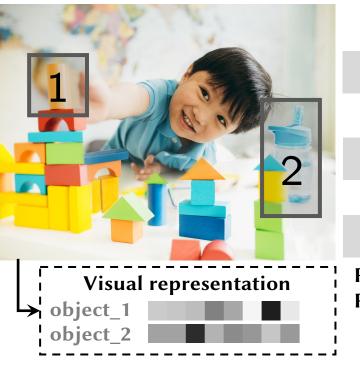




Generalization to Novel Embodiments

Interpretation of Under-Specified Goals

Set up a table for my breakfast.



Word	Syntax	Semantics	Concept Representations			
orange	set/set	λx. filter(x, orange)	ORANGE			
orange(obj	ect_1) = TRUE					
left	set\set/set	λxλy. relate(x, y, left)	LEFT			
<pre>left(object_1, object_2) = FALSE</pre>						
move	action\set/set	$\lambda x \lambda y. action(x, y, move)$	MOVE			
<pre>Precondition: relate(cylin, hand, holding) Postcondition: not(relate(cylin, hand, holding)) relate(cylin, bottle, left)</pre>						

