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Towards Generalist Robots
Goal:
Having a robot that can do many tasks, across many environments.

The robot should make long-horizon plans with rich contact with the
environment, and generalize to unseen objects, states, and goals.
We want to achieve generalizations from a feasible amount of data.
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We will discuss both structures in models and in
planners, in physical decision-making problems.

Transformer



Learning Structured Representations

What structures in models and in planners do we need?
How do they improve our efficiency in learning and planning?
How will they help us achieve the goal of aggressive generalizations?

Learned Structured Model

Learned Structured Planner

World

𝜋



An “Old” Idea —— Task and Motion Planning

Task Plan:

Instruction: Put all food items in the fridge.
Initial State: in(Cabbage, Pot),

on(Potato, Table), ...



An “Old” Idea —— Task and Motion Planning

Task Plan:

Motion Plan:
Refine
+
Feedback

Instruction: Put all food items in the fridge.
Initial State: in(Cabbage, Pot),

on(Potato, Table), ...



Basic Elements in Planning

action pick-up(o: object, p1: pose, g: grasp, t: trajectory)

pre: obj-at(p1), valid-trajectory(t, g, p1)

eff: holding(o)
controller: ...

• Basic predicates.

• Basic operators: preconditions, effects, and controllers.

predicate is-food(o: object)

classifier: ...

predicate in(o: object, r: receptacle)
classifier: ...



Why Should We Factorize the Problem This Way?
Key Idea: Build Compositional Abstractions.

States are described using (state abstraction) :
• on(potato, table)
• door-state(fridge)
And they can be composed to form new concepts
“all food in fridge.”

Actions are described using (temporal abstraction):
• open(door, degree, trajectory)
• grasp(object, pose, approaching-trajectory)
And they can be sequentially or hierarchically composed.
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Compositional abstraction brings sparsity and temporal decomposition.
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Compositional abstraction brings sparsity and temporal decomposition.
Models are sets of low-dimensional manifolds in the configuration space.

action move-to-grasp(o: obj, g: grasp, t: traj)

pre: robot-at(t[0]), valid-g(t[-1], pose(o), g)

eff: robot-at(t[-1]), holding(o, g)

controller: ...

Figure: Hauser and Latombe. Multi-Modal Motion Planning in Non-Expansive Spaces.
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Task and Motion Planning is General, But ...
There are a lot of details to be filled in:

• Where to grasp?

• How to move?
• How far?
• ...

• Where to grasp?

• Where to put?
• Any side-effects?

(e.g., hot item?)
• ...

• Where to grasp?

• Where to place to
be ...

• How to organize
the fridge?

• ...

• Where to grasp?

• Where to place to be stable?
• Enough space for later items?
• Enough space for robot hand?

• Maybe need non-prehensile 
manipulation?

• What will happen to the
cabbage?

• ...



Let’s Add Learning to Tackle These Challenges
• Task and motion planning is a general framework.
• Manually programming everything can be challenging, especially when

dealing with perception and continuous parameters.
• We are interested in learning to tackle these challenges, in particular,

learning structured representations for both the model and the planner.

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. 2022.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. 2024.
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World
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Learning Structured Representations for Models

Learned Structured Model

Learned Structured Planner

World

𝜋

Operators
Controllers

Predicates
Classifiers



Learning Structured Models
• Model each “skill” as a sequence of intra-modemovements and inter-
mode transitions, with parameters.
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action scoop(from, to, tool):
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body:
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effects: marble-update(from)
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Planning Algo.

𝑢", 𝑢#, …

New State
New Goal

Actions

...

Training Data: Trajectories (e.g., demonstrations)

action scoop(from, to, tool):
precondition: ...
body: ...
effect: ...

Programmatic Definition (from Humans or LLMs)

Learning Algo.
Structured 

Model 
Representations

PDSketch
Integrated Domain Programming, Learning, and Planning



The Objective of Learning

action scoop(from, to, tool):
precondition: holding(tool), empty(tool)

contains-marble(from)
body:
move(tool, from)
move-with-contact(tool, from)
move(tool, to)
move(tool)

effects: marble-update(from)
           marble-update(to)

...

Training Data: Trajectories (e.g., demonstrations)
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0
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2

hold marble empty
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Label: 1

Learning Classifiers by Evaluating Preconditions

Back
Prop

precondition:
holding(tool),
empty(tool)
contains-marble(from)



The Objective of Learning
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The Objective of Learning

action scoop( from, to, tool):
precondition: holding(tool), empty(tool)

contains-marble(from)
body:
move(tool, from)
move-with-contact(tool, from)
move(tool, to)
move(tool, to)

effects: marble-update(from)
           marble-update(to)

...

Training Data: Trajectories (e.g., demonstrations)

Target 2: Controllers for sub-actions.



Learning Continuous Parameters or Controllers
Robott
(joints)

Objectt[0]
(pose=...,
 image=...)

Objectt[1]
(x=..., y=...,
 image=...)

1

0

Objectt[2]
(x=..., y=...,
 image=...)

2

action scoop(from, to, tool):
body:
# move to the bowl to scoop from
move(tool, from)
...

π1

Option 1: Directly output a
joint command.

Option 2: Output a target
relative pose, and then call a
motion planner.

+: Most general. Does not rely on
any prior knowledge.

-: Poor generalization for unseen
configurations and obstacles.

-: Need additional knowledge.
+: Better generalization for unseen

configurations and obstacles.

A simple implementation can
be done with segmented
trajectories, but we can also
jointly learn to segment them.



Full robot movement models.
Need to learn object classifiers.

Abstract robot models.
(With ??)

GNNs.
(Weakest prior)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Rob PDS-BasePDS-Abs

PDS-Base
Learned
PDS-Abs

Learning and Planning Efficiency

Environment from: Chevalier-Boisvert et al. 2019.



Abstract robot models.
(With Structures)

Behavior Cloning 0.79
Decision Xformer 0.82
DreamerV2 0.79
PDS-Base 0.62
PDS-Abs 0.98
PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

Very small amount of prior
knowledge significantly 
improves the data efficiency.

Learning and Planning Efficiency



Abstract robot models.
(With Structures)

Behavior Cloning 0.79
Decision Xformer 0.82
DreamerV2 0.79
PDS-Base 0.62
PDS-Abs 0.98
PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

The performance in model 
learning also translates to 
better performance.

Learning and Planning Efficiency



Abstract robot models.
(With Structures)

Behavior Cloning 0.79
Decision Xformer 0.82
DreamerV2 0.79
PDS-Base 0.62
PDS-Abs 0.98
PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

The factored representation 
yields domain-independent 
heuristics which improves 
planning efficiency.

PDS-Base
Learned
PDS-Abs

Learning and Planning Efficiency
• Suppose an action has two preconditions.
• Solve two planning problems separately, and “add” the costs together.
• This usually gives a good estimate of the cost-to-go.
• Such strategy generalizes to structured neural models.



∃x.y. purple(x) & yellow(y) &
      inbox(x) & inbox(y) & left-of(x, y) ∀x. yellow(x) & inbox(x) 

Trained on goals: ∃x.y.color(x)&color(y)&rel(x, y)  Positions, number of objects, colors vary.

Generalization to Unseen States and Goals

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. 2022.



Robust under Local and Global Perturbation

* Trained with 17 human-collected demonstrations.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. 2024.

• Explicitly learned mode classifiers and transition rules enables online re-planning.
• Using motion planners enables generalization in “getting back to pre-scoop poses.”



Learning Structured Representations for Models

Learned Structured Model

Learned Structured Planner

World
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Operators
Controllers

Predicates
Classifiers

Factorization and sparsity structures improves learning and planning efficiency.
Temporal structures supports generalization to unseen goals and states.



Learning Structured Representations for Models

Learned Structured Model

World

𝜋

Operators
Controllers

Predicates
Classifiers

General Planner

Given a sufficient amount of time, a human-written planner can
solve many problems, but it can still be slow for hard problems.
Now let’s look into how we can make planning even faster, by 
learning search guidance.



Learning Structured Representations for Planners

Learned Structured Model

Learned Structured Planner

World

𝜋

Operators
Controllers

Predicates
Classifiers

Regression
Rules



What Can We Learn from One Demonstration?

Learning Reusable Manipulation Strategies. Mao, Lozano-Perez, Tenenbaum, Kaelbling. 2022.



What Can We Learn from One Demonstration?
A “strategy” for picking up the cylinder.

• Push to rotate.
• Exert force on one end so that it tilts.
• Move the bucket. 

You might not be able to execute it robustly 
now, but you have some “ideas.”
We aim to learn such “strategies” from a
single demonstration and apply them
compositionally.
Learning Reusable Manipulation Strategies. Mao, Lozano-Perez, Tenenbaum, Kaelbling. 2022.



Problem Formulation
We have a basic model for object manipulation & one demonstration.

Single Demo

Basic Domain Model

Learning Algo.
“Knowledge” of

Manipulation Strategy

Planning Algo.

What can we learn from the demonstration?

𝑢", 𝑢#, …

New State
New Goal

Actions

(5 Actions: Transit, Grasp, Place, Push, Move)



What Can We Learn from One Demonstration?

Let’s talk about a familiar example: hook-using.

Hand

Ladle

FloorSpoon

Grasp: 𝑔

Contact: (𝑝, 𝑛)

Support: (𝑝, 𝑛)

Key idea: some manipulation “strategies” can be modeled by
a sequence of subgoals about contacts among objects.



Key idea: some manipulation “strategies” can be modeled by

The Contact Mode Subgoals in Hook-Using

a sequence of subgoals about contacts among objects.
rule hook(target, tool, support):
  goal: holding(target)
precondition: on(target, support)

                on(tool, support)
  body:
    grasp(tool, ?pose, ?traj)
    move-with-contact(tool, target, ?traj)
    place(tool, support, ?pose, ?traj)
    grasp(target, ?pose, ?traj)
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Key idea: some manipulation “strategies” can be modeled by

The Contact Mode Subgoals in Hook-Using

a sequence of subgoals about contacts among objects.
rule hook(target, tool, support):
  goal: holding(target)
precondition: on(target, support)

                on(tool, support)
  body:
    grasp(tool, ?pose, ?traj)
    move-with-contact(tool, target, ?traj)
    place(tool, support, ?pose, ?traj)
    grasp(target, ?pose, ?traj)

Previously we were learning causal models of
actions and plans with them. Now we can
memorize “partial solutions” as shortcuts.



Many Strategies Can Be Represented This Way
We call these manipulation strategies “mechanisms.”



Many Strategies Can Be Represented This Way
We call these manipulation strategies “mechanisms.”

Mechanisms as sequence of contact mode families generalizes.

We learn these mechanisms, and we compose them.



Overview of the Framework
There are two learning problems:
1. Learning of the contact mode sequence.

2. Learning samplers for parameters of the contact modes: where to grasp, how to 
move, etc.



Single Demo Contact Modes and Goals

Overview of the Framework
There are two learning problems:
1. Learning of the contact mode sequence.

2. Learning samplers for parameters of the contact modes: where to grasp, how to 
move, etc.

We will recover it from the single demonstration.

(:macro hook
:parameters (

  ?tool - item
  ?target - item
  ?support - item
 )
 :certified (
  (holding ?target)
 )
...)



Single Demo Contact Modes and Goals Self-Play

s0

s1

s2

a0

a1

grasp(?tool; θ!)

move-cont(?tool;	θ")

place(?tool; θ#)

......

Compositional 
Planning

Goal:
Block on the Slope

Overview of the Framework
There are two learning problems:
1. Learning of the contact mode sequence.

2. Learning samplers for parameters of the contact modes: where to grasp, how to 
move, etc.

We will recover it from the single demonstration.

Learned Contact Distributions

(:macro hook
:parameters (

  ?tool - item
  ?target - item
  ?support - item
 )
 :certified (
  (holding ?target)
 )
...)



Step 2: Learn Mechanism-Specific Samplers
We will learn those samplers (parameter generators) from self-plays.

Contact 
Modes and 

Goals

Self-Play with Randomly Sampled Objects and Poses

Successful Trials

Failed Trials

......

......

Dataset

NN-Based Sampler



Learning Mechanisms Improves Efficiency



Learning Mechanisms Improves Planning Efficiency

Goal:
holding(plate)



Learning Mechanisms Improves Planning Efficiency

Goal:
holding(plate)



Composing Mechanisms Automatically by Planning

Goal: holding(box)
The caliper is too flat to be grasped.

Goal: on(box, ramp)
Box may slide down the ramp.



Real Robot Execution of the Learned Strategies
Goal: in(cube, cup)

Generalization to new tools, with no 3D model required.
We apply our structured model and planner based on point cloud inputs.



Extension Beyond Rigid-Body Contacts

Composable Part-Based Manipulation. Liu, Mao, Hsu, Hermans, Garg, Wu. CoRL 2023.

Trained on glasses, bowls, and frypans. Generalize to mugs.

Train Test



Compositional Abstractions Enable Generalization
Generalization to Novel Objects
Train Test Train Test Perturb Recover

Generalization to Novel States



Compositional Abstractions Enable Generalization
Generalization to Novel Objects
Train Test Train Test Perturb Recover

Generalization to Novel States

TestTrain

Generalization to Novel Words

By factorizing action controller learning and visual recognition of objects (using CLIP),
we can zero-shot generalize to instructions with unseen words.



Compositional Abstractions Enable Generalization
Generalization to Novel Objects
Train Test Train Test Perturb Recover

Generalization to Novel States

TestTrain

Generalization to Novel Words Generalization to Novel Embodiments
Train Test

By factorizing the robot controller and the generation of object trajectories, we can
train policies on videos of other robots and even humans, and deploy on a different robot.



Compositional Abstractions Enable Generalization
Generalization to Novel Objects
Train Test Train Test Perturb Recover

Generalization to Novel States

TestTrain

Generalization to Novel Words Generalization to Novel Embodiments
Train Test

Interpretation of Under-Specified Goals

After

Set up a table for my breakfast.
Before

By factorizing goals into finer-grained object relationships using LLMs, we build systems
that can interpret under-specified human goals.



Compositional Abstractions Enable Generalization

Generalization to Novel Objects
Train Test Train Test Perturb Recover

Generalization to Novel States

TestTrain

Generalization to Novel Words Generalization to Novel Embodiments
Train Test

After

Set up a table for my breakfast.
Before

Principles: Compositional abstractions for
• states (objects, relations, and sparse transition models), and
• actions and plans (hierarchical compositions and decompositions)
enable data-efficient learning, faster planning, and better generalization.

Interpretation of Under-Specified Goals



orange set/set 𝜆x. filter(x, orange)

𝜆x𝜆y. relate(x, y, left)set\set/setleft

Word Syntax Semantics

orange(object_1) = TRUE

left(object_1, object_2) = FALSE

𝜆x𝜆y. action(x, y, move)action\set/setmove
Precondition: relate(cylin, hand, holding)
Postcondition: not(relate(cylin, hand, holding)) relate(cylin, bottle, left)

Visual representation
object_1
object_2

1

2

ORANGE

LEFT

Concept Representations

MOVE



Visual Reasoning Robotic ManipulationDynamics and Causality GroundedSyntaxLearning

Query: Put the mug to the right 
of the Plate.

Query: This is an orange sphere.Query: Which ball is responsible
to the cylinder collision?

Compositional Concepts

orange set/set 𝜆x. filter(x, orange)

𝜆x𝜆y. relate(x, y, left)set\set/setleft

Word Syntax Semantics

orange(object_1) = TRUE

left(object_1, object_2) = FALSE

𝜆x𝜆y. action(x, y, move)action\set/setmove
Precondition: relate(cylin, hand, holding)
Postcondition: not(relate(cylin, hand, holding)) relate(cylin, bottle, left)

Visual representation
object_1
object_2

1

2

ORANGE

LEFT

Concept Representations

MOVE

Query: Is there a dresser on the 
left side of the cabinet?


