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Towards General-Purpose Robots
Goal:
Having a robot that can do many tasks, across many environments

The robot should make long-horizon plans with rich contact with the
environment, and generalize to unseen objects, states, and goals
We want to achieve generalization from a feasible amount of data



Structures of the “Robot Brain”
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Structures of the “Robot Brain”

?
What kinds of structures are
useful / needed for most physical
decision-making problems?MCTS
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MCTS

𝜋: 𝑜, 𝑎 ∗ → 𝑎
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We will discuss both structures in both models and in
inference algorithms, in physical decision-making problems

Transformer
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State Representation
Monolithic Compositional

Action Representation
As Feedforward Policies As Causal Models

Model Acquisition
Machine Learned Human Programmed

Structures of the “Robot Brain”
Today



Key Question: What’s an Action Anyway?



A Generic Action Description
action move-to-grasp(o: obj)

body:

    find g: valid-grasp(g, o)
    find t: valid-trajectory(o, g, t)

achieve robot-at == t[0]
call robot-controller-move(t)

call robot-controller-grasp()

eff:
robot-at = t[-1])

holding[o] = g

Find parameters that has certain properties

Achieve state conditions

Call controllers to generate torque

Update the state



Connection to (Hierarchical) Policy
action move-to-grasp(o: obj)

body:

    find g: valid-grasp(g, o)
    find t: valid-trajectory(o, g, t)

achieve robot-at == t[0]
call robot-controller-move(t)

call robot-controller-grasp()

eff:
robot-at = t[-1])

holding[o] = g

Option parameter prediction

Hierarchical decomposition

Call controllers to generate torque

Hierarchical forward models (for planning)



Connection to (Hierarchical) Task and Motion Planning
action move-to-grasp(o: obj)

body:

    find g: valid-grasp(g, o)
    find t: valid-trajectory(o, g, t)

achieve robot-at == t[0]
call robot-controller-move(t)

call robot-controller-grasp()

eff:
robot-at = t[-1])

holding[o] = g

Constraints to satisfy

Preconditions

Call controllers to generate torque

Effects



Connecting Policies and Planning Descriptions
action move-to-grasp(o: obj)

body:

    find g: valid-grasp(g, o)
    find t: valid-trajectory(o, g, t)

achieve robot-at == t[0]
call robot-controller-move(t)

call robot-controller-grasp()

eff:
robot-at = t[-1])

holding[o] = g

Insight: If you know the order and the way for achieving preconditions...

What planning problems can a relational neural network solve? Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2023.

Actions as Causal Models Actions as Feed-forward Policies



Connecting Policies and Planning Descriptions
action move-to-grasp(o: obj)

body:

    find g: valid-grasp(g, o)
    find t: valid-trajectory(o, g, t)

achieve robot-at == t[0]
call robot-controller-move(t)

call robot-controller-grasp()

eff:
robot-at = t[-1])

holding[o] = g

Insight: If you know the order and the way for achieving preconditions...

What planning problems can a relational neural network solve? Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2023.

Actions as Causal Models Actions as Feed-forward Policies

Theorem:
When there exist decompositions
where at most 𝑘 subgoals interact,
policy complexity is𝑁!(#)

Planning enables constructing those
policies with a compact model



Why Do We Need Compositional Abstractions?
States are described using (state abstraction) :

holding(cube)
in(cube, cup)

They can be composed: “all cubes in the cup”

Actions are described using (temporal abstraction):
grasp(object)
place-in(object, container)

They can be sequentially or hierarchically composed



Why Do We Need Compositional Abstractions?
Compositional abstraction brings sparsity and temporal decomposition
Models are sets of low-dimensional manifolds in the configuration space

action move-to-grasp(o: obj)

find valid-grasp(o, g) valid-traj(o, g, t);

achieve robot-at(t[0]); call ...

eff: robot-at(t[-1]), holding(o, g)

Figure: Hauser and Latombe. Multi-Modal Motion Planning in Non-Expansive Spaces.
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They are connected at regions modeled by preconditions and effects
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Why Do We Need Compositional Abstractions?
Compositional abstraction brings sparsity and temporal decomposition
Models are sets of low-dimensional manifolds in the configuration space
They are connected at regions modeled by preconditions and effects
They make planning easier by suggesting subgoals for planning
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They are connected at regions modeled by preconditions and effects
They make planning easier by suggesting subgoals for planning
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action move-to-grasp(o: obj)
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Structures of the “Robot Brain”
Compositional ActionState Representation

Monolithic Compositional

Action Representation
As Feedforward Policies As Causal Models

Model Acquisition
Machine Learned Human Programmed

?



Two Parts of The Representation in Physical Domains

• Structure: abstract descriptions of mode families, object-invariant
• Can be described by a factorized model over objects and their relations
• Easy for humans to specify or get from LLMs. We call them “sketches”

• Detail: perception, geometry, physics
• Hard for humans to write down. They are the grounding of the functions

action move-while-holding(o: obj, g: grasp)

find valid-traj(o, g, t);

achieve holding(o, g), robot-at(t[0]); call ...

eff: robot-at(t[-1]), obj-at(...)



Structured Models With Factorization and Decomposition
• A skill (e.g., scooping) is a sequence of intra-modemovements and inter-
mode transitions, with parameters

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2022.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. ICLR 2024.



# move to the bowl to scoop from
scoop-move-empty(tool, bowlA)

# scoop the piles
scoop-move-with-contact(tool, bowlA)

# move to the bowl to drop the piles
scoop-move-full(tool, bowlB)

# drop the piles
scoop-move-dump(tool)

Structured Models With Factorization and Decomposition
• A skill (e.g., scooping) is a sequence of intra-modemovements and inter-
mode transitions, with parameters



Structured Models With Factorization and Decomposition

# move to the bowl to scoop from
scoop-move-empty(tool, bowlA)

achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

# scoop the piles
scoop-move-with-contact(tool, bowlA)

achieve hold, empty, close(tool, bowlA)
eff: marble-upd(tool), marble-upd(bowlA)

# move to the bowl to drop the piles
scoop-move-full(tool, bowlB)

...
# drop the piles
scoop-move-dump(tool)

• A skill (e.g., scooping) is a sequence of intra-modemovements and inter-
mode transitions, with parameters
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Assumptions:
Access to object segmentations
Access to trajectory segmentations*
Learning:
Functions for classifiers, transition 
models, and controllers

...

Training Data: Trajectories (e.g., demonstrations)

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

......

Abstract Sketch (from Humans or LLMs)

Learning Algo.

PDSketch
Integrated Domain Programming, Learning, and Planning

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2022.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. ICLR 2024.

Structured 
Model 

Representations



Planning Algo.
New State
New Goal

Actions

...

Training Data: Trajectories (e.g., demonstrations)

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

......

Abstract Sketch (from Humans or LLMs)

Learning Algo.
Structured 

Model 
Representations

PDSketch
Integrated Domain Programming, Learning, and Planning

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2022.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. ICLR 2024.



...

Training Data: Trajectories (e.g., demonstrations)

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

......

Programmatic Definition (from Humans or LLMs)

PDSketch
Integrated Domain Programming, Learning, and Planning

We will first assume they are given 
Later talk about how to learn them

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2022.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. ICLR 2024.

Planning Algo.
New State
New Goal

Actions

Learning Algo.
Structured 

Model 
Representations



The Objective of Learning

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

scoop-move-with-contact(tool, from)
achieve hold, empty, close(tool, bowlA)
eff: marble-upd(tool), marble-upd(bowlA)

scoop-move-full(tool, to)
...

scoop-move-dump(tool)
...

...

Training Data: Trajectories (e.g., demonstrations)
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Target 1: Classifiers for predicates
Learning to classify objects and relations
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The Objective of Learning

...

Training Data: Trajectories (e.g., demonstrations)

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

scoop-move-with-contact(tool, from)
achieve hold, empty, close(tool, bowlA)
eff: marble-upd(tool), marble-upd(bowlA)

scoop-move-full(tool, to)
...

scoop-move-dump(tool)
...

Target 1: Classifiers for predicates
Learning to classify objects and relations



Robott
(joints)

Objectt[0]
(pose=...,
 image=...)

Objectt[1]
(x=..., y=...,
 image=...)

1

0

(Before)

Objectt[2]
(x=..., y=...,
 image=...)

2

hold empty

and

Label: 1

Learning Through the Computation Graph of Preconditions

precondition:
holding(tool),
empty(tool)

Back
Prop

In demonstration, precondition has been
achieved before executing the action.



The Objective of Learning

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

scoop-move-with-contact(tool, from)
achieve hold, empty, close(tool, bowlA)
eff: marble-upd(tool), marble-upd(bowlA)

scoop-move-full(tool, to)
...

scoop-move-dump(tool)
...

...

Training Data: Trajectories (e.g., demonstrations)

Target 3: Transition models



Robott
(joints)

Objectt[0]
(pose=...,
 image=...)

Objectt[1]
(x=..., y=...,
 image=...)

1

0

1

0

(Before)

(After)

Objectt[2]
(x=..., y=...,
 image=...)

2

?t1

2

Learning Transitions from Self-Supervision

Predicted
State[0]

?t2

Predicted
State[1]

Robott+1
(joints)

Objectt+1[0]
(pose=...,
 image=...)

Objectt+1[1]
(x=..., y=...,
 image=...)

Objectt+1[2]
(x=..., y=...,
 image=...)

Back
Prop

effects: marble-update(tool)
marble-update(bowlA)



The Objective of Learning

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

scoop-move-with-contact(tool, from)
achieve hold, empty, close(tool, bowlA)
eff: marble-upd(tool), marble-upd(bowlA)

scoop-move-full(tool, to)
...

scoop-move-dump(tool)
...

...

Training Data: Trajectories (e.g., demonstrations)

Target 2: Controllers for sub-actions



Learning Continuous Parameters or Controllers
Robott
(joints)

Objectt[0]
(pose=...,
 image=...)

Objectt[1]
(x=..., y=...,
 image=...)

1

0

Objectt[2]
(x=..., y=...,
 image=...)

2

scoop-move-with-contact(tool, from) π1

Option 1: Directly output a
joint command

Option 2: Output a target
relative pose, and then call a
motion planner

+: Most general. Does not rely on
any prior knowledge

-: Poor generalization for unseen
configurations and obstacles.

-: Need additional knowledge
+: Better generalization for unseen

configurations and obstacles

A simple implementation can
be done with segmented
trajectories, but we can also
jointly learn to segment them



Full robot movement models
Learn to interpret goals

Abstract robot models
(With uninterpreted symbols)

GNNs
(Weakest prior)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Rob PDS-BasePDS-Abs

PDS-Base
Learned
PDS-Abs

Learning and Planning Efficiency

Environment from: Chevalier-Boisvert et al. 2019.



Full robot movement models
Learn to interpret goals

Abstract robot models
(With uninterpreted symbols)

GNNs
(Weakest prior)

Data Efficiency

PDS-Rob PDS-BasePDS-Abs

Learning and Planning Efficiency

Environment from: Chevalier-Boisvert et al. 2019.

Very small amount of prior
knowledge significantly 
improves the data efficiency



Full robot movement models
Learn to interpret goals

Abstract robot models
(With uninterpreted symbols)

GNNs
(Weakest prior)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success Rate

PDS-Rob PDS-BasePDS-Abs

Learning and Planning Efficiency

Environment from: Chevalier-Boisvert et al. 2019.

The performance in model 
learning also translates to 
better performance



Full robot movement models
Learn to interpret goals

Abstract robot models
(With uninterpreted symbols)

GNNs
(Weakest prior)

Planning Efficiency

PDS-Rob PDS-BasePDS-Abs

PDS-Base
Learned
PDS-Abs

Learning and Planning Efficiency

Environment from: Chevalier-Boisvert et al. 2019.

The factored representation 
yields domain-independent 
heuristics which improves 
planning efficiency



Planning Efficiency via Domain-Independent Heuristics
• Suppose an action has two preconditions
• Solve two planning problems separately, and “add” the costs together

goal: filled(bowlB) and on(bowlB, tableB)

drop(spoon, bowlB) 

scoop(spoon, bowlA) 

need to change
marble-state(bowlB)

need to change
pose(bowlB)

place(bowlB) 

need to change
marble-state(tool)

need to change
pose(tool)

move(spoon)

... ...

...



Planning Efficiency via Domain-Independent Heuristics
• Suppose an action has two preconditions
• Solve two planning problems separately, and “add” the costs together

• This gives a good estimate of the cost-to-go and it’s efficient to compute
• PDSketch generalizes this to the (neural) computation graphs of

preconditions and transitions

goal: filled(bowlB) and on(bowlB, tableB)

drop(spoon, bowlB) 

scoop(spoon, bowlA) 

need to change
marble-state(bowlB)

need to change
pose(bowlB)

place(bowlB) 

need to change
marble-state(tool)

need to change
pose(tool)

move(spoon)

...

FF: The Fast-Forward Planning System. Hoffmann. AAAI 2001.
PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2022.



Generalization to Unseen Goals

Liu*, Mao*, Nie*, et al. In Preparation. Environment from Mees et al. CALVIN. RA-L. 2022.

Data: language-annotated demonstrations
What it learns:
• Classifiers for relations (e.g., light-on)
• (Diffusion) policies for a set of primitive

actions, based on a motion planner
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• Classifiers for relations (e.g., light-on)
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Generalization to Unseen Goals

Liu*, Mao*, Nie*, et al. In Preparation. Environment from Mees et al. CALVIN. RA-L. 2022.

Data: language-annotated demonstrations
What it learns:
• Classifiers for relations (e.g., light-on)
• (Diffusion) policies for a set of primitive

actions, based on a motion planner Novel goal: all lights turned off



Generalization to Underspecified Goals
Instruction: Set up a table for my breakfast, please. I have set the plate for you

Compositional Diffusion-Based Continuous Constraint Solvers. Yang, Mao, Du, Wu, Tenenbaum, Lozano-Perez, Kaelbling. CoRL 2023.
Functional Object Arrangement with Compositional Generative Models. Xu, Mao, Du, Hsu, Kaelbling. In submission.
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Relational Graph

on(bowl, plate),
left_of(apple, plate),
right_of(spoon, plate),
aligned_horizontally(

apple, plate, spoon, mug
),
...

LLM

Compositional 
Diffusion-Based

Constraint Solver 

Bowl Mug

Cheez It

Spoon

Apple
Plate
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Instruction: Set up a table for my breakfast, please. I have set the plate for you

Compositional Diffusion-Based Continuous Constraint Solvers. Yang, Mao, Du, Wu, Tenenbaum, Lozano-Perez, Kaelbling. CoRL 2023.
Functional Object Arrangement with Compositional Generative Models. Xu, Mao, Du, Hsu, Kaelbling. In submission.
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Generalization to Underspecified Goals
Instruction: Set up a table for my breakfast, please. I have set the plate for you

Compositional Diffusion-Based Continuous Constraint Solvers. Yang, Mao, Du, Wu, Tenenbaum, Lozano-Perez, Kaelbling. CoRL 2023.
Functional Object Arrangement with Compositional Generative Models. Xu, Mao, Du, Hsu, Kaelbling. In submission.

Compositional 
Diffusion-Based

Constraint Solver 

After (Top View)

Relational Graph

on(bowl, plate),
left_of(apple, plate),
right_of(spoon, plate),
aligned_horizontally(

apple, plate, spoon, mug
),
...

LLM



Robust under Local and Global Perturbation

* Trained with 17 human-collected demonstrations, and ~200 counterfactual replays.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. ICLR 2024.

• Explicitly learned mode classifiers and transition rules enable online re-planning
• Using motion planners enables generalization in “getting back to pre-scoop poses”



...

Training Data: Trajectories (e.g., demonstrations)

scoop-move-empty(tool, bowlA)
achieve hold(tool), empty(tool)
eff: close(tool, bowlA)

......

Programmatic Definition (from Humans or LLMs)

PDSketch
Integrated Domain Programming, Learning, and Planning

Now let’s talk about how we can get
this automatically from language

PDSketch: Integrated Domain Programming, Learning, and Planning. Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2022.
Grounding Language Plans in Demonstrations through Counter-factual Perturbations. Wang, Wang, Mao, Hagenow, Shah. ICLR 2024.

Planning Algo.
New State
New Goal

Actions

Learning Algo.
Structured 

Model 
Representations



Learning Abstractions from Language

Learning Adaptive Planning Representations with Natural Language Guidance. Wong*, Mao*, Sharma*, et al. ICLR 2024.

Wash the dirty bowl before putting the 
bowl on the counter.

Put chilled wine in the cabinet.

Warm a plate and place it on the table.

Place a cold potato slice in the oven.

• We start with a distribution of tasks, including the environments and possible goals
• We want to automatically build a compositional abstraction for states and actions

Structured
States+Actions

Neural Network
Groundings

Plan

Environment

Planner

Execution
Reward

Policy
Gradient



Learning Abstractions from Language

Learning Adaptive Planning Representations with Natural Language Guidance. Wong*, Mao*, Sharma*, et al. ICLR 2024.
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• We want to automatically build a compositional abstraction for states and actions

Neural Network
Groundings

Plan

Environment

Language Model

Structured
States+Actions

Planner

Execution
Reward

Policy
Gradient

LLM Prompting



Learning Abstractions from Language

Learning Adaptive Planning Representations with Natural Language Guidance. Wong*, Mao*, Sharma*, et al. ICLR 2024.

Wash the dirty bowl before putting the 
bowl on the counter.

Put chilled wine in the cabinet.

Warm a plate and place it on the table.

Place a cold potato slice in the oven.

• We start with a distribution of tasks, including the environments and possible goals
• We want to automatically build a compositional abstraction for states and actions

Neural Network
Groundings

Plan

Environment

Language Model

Structured
States+Actions

Planner

Execution
Reward

Policy
Gradient

LLM Prompting(pick-up egg)
...... (more steps)
(place pot stove)
(heat-object kitchen microwave egg)
...... (more steps)

LLM Generation
Bring a hot egg to the table.

Objects: egg, stove, ......
State: on(egg, table), cold(egg),
open(microwave), ......

(:action heat-object
:parameters (?l ?r ?o)
:precondition (and
(receptacleType ?r MicrowaveType)

 (atLocation ?l)
 (receptacleAtLocation ?r ?l)
 (holds ?o))
:effect (and (isHot ?o)))

heat-object ? ? ?

Extract Undefined
Operator Names



Learning Abstractions from Language

Learning Adaptive Planning Representations with Natural Language Guidance. Wong*, Mao*, Sharma*, et al. ICLR 2024.

Wash the dirty bowl before putting the 
bowl on the counter.

Put chilled wine in the cabinet.

Warm a plate and place it on the table.

Place a cold potato slice in the oven.

• We start with a distribution of tasks, including the environments and possible goals
• We want to automatically build a compositional abstraction for states and actions

Neural Network
Groundings

Plan

Environment

Language Model

Structured
States+Actions

Planner

Execution
Reward

Policy
Gradient

LLM Prompting

(:action CoolObject
  :parameters (
    ?toolreceptacle - receptacle ?a – agent ?l - location ?o - object)
  :precondition (and
    (receptacleType ?toolreceptacle FridgeType)
    (atLocation ?a ?l)
    (holds ?a ?o)
    (receptacleAtLocation ?toolreceptacle ?l))
  :effect (and 
    (isCool ?o)))

(:action SliceObject
  :parameters (
    ?toolobject - object ?a – agent ?l - location ?o - object)
  :precondition (and
    (objectType ?toolobject KnifeType)
    (atLocation ?a ?l)
    (objectAtLocation ?o ?l)
    (sliceable ?o)
    (holds ?a ?toolobject))
  :effect (and 
    (isSliced ?o)))



Learning Abstractions from Language

Learning Adaptive Planning Representations with Natural Language Guidance. Wong*, Mao*, Sharma*, et al. ICLR 2024.

Wash the dirty bowl before putting the 
bowl on the counter.

Put chilled wine in the cabinet.

Warm a plate and place it on the table.



Learning Abstractions from Language

Learning Adaptive Planning Representations with Natural Language Guidance. Wong*, Mao*, Sharma*, et al. ICLR 2024.

Wash the dirty bowl before putting the 
bowl on the counter.

Put chilled wine in the cabinet.

Warm a plate and place it on the table.

Craft a bed.



Structures of the “Robot Brain”
Compositional Action

Factorization representations improve learning and planning efficiency
Temporal structures support generalization to unseen goals and states

Compositional ActionState Representation
Monolithic Compositional

Action Representation
As Feedforward Policies As Causal Models

Model Acquisition
Machine Learned Human Programmed



State Representation
Monolithic Compositional

Model Acquisition
Machine Learned Human Programmed

Structures of the “Robot Brain”
State Representation

So far we have been exploring learning only causal models for “primitives”
Next: going beyond causal models and beyond language

Compositional ActionCompositional ActionCompositional Action

Action Representation
As Feedforward Policies As Causal Models

?



What Can We Learn from One Demonstration?

Learning Reusable Manipulation Strategies. Mao, Lozano-Perez, Tenenbaum, Kaelbling. CoRL 2023.



What Can We Learn from One Demonstration?
A “strategy” for picking up the cylinder

• Push to rotate
• Exert force on one end so that it tilts
• Move the bucket

You might not be able to execute it robustly 
now, but you have some “ideas”
We aim to learn such “strategies” from a
single demonstration and apply them
compositionally
Learning Reusable Manipulation Strategies. Mao, Lozano-Perez, Tenenbaum, Kaelbling. CoRL 2023.



Problem Formulation
We have a basic model for object manipulation & one demonstration

Single Demo

Basic Domain Model

Learning Algo.
“Knowledge” of

Manipulation Strategy

Planning Algo.

What can we learn from the demonstration?

𝑢", 𝑢#, …

New State
New Goal

Actions

(5 Actions: Transit, Grasp, Place, Push, Move)



What Can We Learn from One Demonstration?

Let’s talk about a familiar example: hook-using

Hand

Ladle

FloorSpoon

Grasp: 𝑔

Contact: (𝑝, 𝑛)

Support: (𝑝, 𝑛)

Key idea: some manipulation “strategies” can be modeled by
a sequence of subgoals about contacts among objects



What Can We Learn from One Demonstration?

Let’s talk about a familiar example: hook-using

Hand

Ladle

FloorSpoon

Grasp: 𝑔

Contact: (𝑝, 𝑛)

Support: (𝑝, 𝑛)

Key idea: some manipulation “strategies” can be modeled by
a sequence of subgoals about contacts among objects

Those are some most 
“primitive” mode families!



Key idea: some manipulation “strategies” can be modeled by

The Contact Mode Subgoals in Hook-Using

a sequence of subgoals about contacts among objects
action hook(target, tool, support):
body:

    achieve holding(tool, ?grasp1)
    move-with-contact(tool, target, ?traj)
 achieve holding-nothing

grasp(target, ?grasp2)
eff:
holding(target, ?grasp2)

grasp
tool

“hook” place 
tool

grasp 
target
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eff:
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Key idea: some manipulation “strategies” can be modeled by

The Contact Mode Subgoals in Hook-Using

a sequence of subgoals about contacts among objects
action hook(target, tool, support):
body:

    achieve holding(tool, ?grasp1)
    move-with-contact(tool, target, ?traj)
 achieve holding-nothing

grasp(target, ?grasp2)
eff:
holding(target, ?grasp2)

grasp
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Key idea: some manipulation “strategies” can be modeled by

The Contact Mode Subgoals in Hook-Using

a sequence of subgoals about contacts among objects
action hook(target, tool, support):
body:

    achieve holding(tool, ?grasp1)
    move-with-contact(tool, target, ?traj)
 achieve holding-nothing

grasp(target, ?grasp2)
eff:
holding(target, ?grasp2)

Previously we were learning causal models of
actions and planning with them. Now we can
memorize “partial solutions” as shortcuts



Many Strategies Can Be Represented This Way
We call these manipulation strategies “mechanisms”

Mechanisms as sequence of contact
mode families generalizes

We learn these mechanisms, and we 
compose them



Overview of the Framework
There are two learning problems:
1. Learning of the contact mode sequence

2. Learning samplers for parameters of the contact modes: where to grasp, how to 
move, etc.



Single Demo Contact Modes and Goals

Overview of the Framework
There are two learning problems:
1. Learning of the contact mode sequence

2. Learning samplers for parameters of the contact modes: where to grasp, how to 
move, etc.

We will recover it from the single demonstration

action hook(
tool, target,
support

):
 body:

achieve ...
...

 eff:
  (holding ?target)



Single Demo Contact Modes and Goals Self-Play

s0

s1

s2

a0

a1

grasp(?tool; θ!)

move-cont(?tool;	θ")

place(?tool; θ#)

......

Compositional 
Planning

Goal:
Block on the Slope

Overview of the Framework
There are two learning problems:
1. Learning of the contact mode sequence

2. Learning samplers for parameters of the contact modes: where to grasp, how to 
move, etc.

We will recover it from the single demonstration

Learned Contact Distributions

action hook(
tool, target,
support

):
 body:

achieve ...
...

 eff:
  (holding ?target)



Step 2: Learn Mechanism-Specific Samplers
We will learn those samplers (parameter generators) from self-play

Contact 
Modes and 

Goals

Self-Play with Randomly Sampled Objects and Poses

Successful Trials

Failed Trials

......

......

Dataset

NN-Based Sampler



Learning Mechanisms Improves Planning Efficiency



Learning Mechanisms Improves Planning Efficiency

Goal:
holding(plate)



Learning Mechanisms Improves Planning Efficiency

Goal:
holding(plate)



Learning Mechanisms Improves Planning Efficiency

Goal:
holding(plate)



Composing Mechanisms Automatically by Planning

Goal: holding(box)
The caliper is too flat to be grasped

action hook(target, tool, support):
body:

    achieve holding(tool, ?grasp1)
    move-with-contact(tool, target, ?t)
 ......
eff:
holding(target, ?grasp2)

action grasp-from-edge(target, support):
body:
push(target, support, ?t)

    grasp(target, ?grasp)
eff:

holding(target, ?grasp)

Automatically composed
by matching preconditions and effects



Composing Mechanisms Automatically by Planning

Goal: holding(box)
The caliper is too flat to be grasped

Goal: on(box, ramp)
Box may slide down the ramp



Real Robot Execution of the Learned Strategies
Goal: in(cube, cup)

Generalizes to new tools, with no 3D model required
We apply our structured model and planner based on point cloud inputs



Compositional Abstractions Enable Generalization
Generalization to Novel Objects
Train Test Perturb Recover

Generalization to Novel StatesGeneralization to Novel Goals

After

Set up a table for my breakfast.
Before



Compositional Abstractions Enable Generalization

TestTrain

Generalization to Novel Words

By composing learned action controllers and visual recognition models (e.g., CLIP),
we can zero-shot generalize to instructions with previously unseen words

Programmatically Grounded, Compositionally Generalization Robotic Manipulation. Wang*, Mao*, Hsu, Zhao, Gao, Wu. ICLR 2023.

Generalization to Novel Objects
Train Test Perturb Recover

Generalization to Novel StatesGeneralization to Novel Goals

After

Set up a table for my breakfast.
Before



Compositional Abstractions Enable Generalization

TestTrain

Generalization to Novel Words Generalization to Novel Embodiments
Train Test

By composing the robot controller and the generation of object trajectories, we can
train policies on videos of other robots and even humans, and deploy on a different robot

Learning to Act from Actionless Video through Dense Correspondences. Ko, Mao, Du, Sun, Tenenbaum. ICLR 2024.

Generalization to Novel Objects
Train Test Perturb Recover

Generalization to Novel StatesGeneralization to Novel Goals

After

Set up a table for my breakfast.
Before



Compositional Abstractions Enable Generalization
Generalization to Novel Objects
Train Test Perturb Recover

Generalization to Novel States

TestTrain

Generalization to Novel Words Generalization to Novel Embodiments
Train Test

By composing part-part interactions,
we build systems that can generalize to unseen object categories

Generalization to Novel Goals

After

Set up a table for my breakfast.
Before

Train Test

Generalization to Novel Categories

Composable Part-Based Manipulation. Liu, Mao, Hsu, Hermans, Garg, Wu. CoRL 2023.



Compositional Abstractions Enable Generalization
Principle: Compositional abstractions for
• states (objects, relations, and sparse transition models), and
• actions and plans (hierarchical compositions and decompositions)
enable data-efficient learning, faster planning, and better generalization

We showed how to build in search algorithms and representational structures for learning

What planning problems can a relational neural network solve? Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2023.



Compositional Abstractions Enable Generalization
Principle: Compositional abstractions for
• states (objects, relations, and sparse transition models), and
• actions and plans (hierarchical compositions and decompositions)
enable data-efficient learning, faster planning, and better generalization

We showed how to build in search algorithms and representational structures for learning
Of course, we can further relax the amount of built-in structures
Today, we give ideas about and constraints on the kinds of network models that could 
possible be used to learn the computations we need

Neural Logic Machines. Dong*, Mao*, Lin, Wang, Li, Zhou. ICLR 2019.
Sparse and Local Hypergraph Reasoning Networks. Xiao, Kaelbling, Wu, Mao. LOG 2023.
What planning problems can a relational neural network solve? Mao, Lozano-Perez, Tenenbaum, Kaelbling. NeurIPS 2023.



Connections to Human Cognition

1

2

orange 𝜆x. filter(x, orange)

𝜆x𝜆y. relate(x, y, right)right

Concept Symbolic Programs

𝜆x𝜆y.place

ORANGE

RIGHT

Neural Networks

PLACEprecondition: holding(x)
postcondition: on(x, y)
controller: action(x, y, place)

Broader principle : Concepts as the building block of compositional thoughts, formed
based on representational structures over objects, space, physics, numbers, and agents

A small set of the concepts are built-in (e.g., contact); the rest are learned language

“Core Knowledge” in developmental psychology



Reasoning about Objects

Q: Is the dresser left of the cabinet?

Q: Put the mug next to the Plate.

Robotic Manipulation

Causality in Humans

Q: Which ball caused the collision?

Compositionality in
Human Writing Systems

Grounded Syntax Learning

Reasoning about Abstractions

Q: Who is wining this tic-tac-toe game?
Hsu et al. 2024.

Shi*, Mao* et al. 2019. Mao et al 2021.

Mao et al. 2019. Hsu*, Mao* et al. 2023. Mao*, Yang* et al 2023.

Jiang et al 2024.

Broader principle : Concepts as the building block of compositional thoughts, formed
based on representational structures over objects, space, physics, numbers, and agents



Compositional Abstractions Enable Generalization
Principles: Compositional abstractions for
• states (objects, relations, and sparse transition models), and
• actions and plans (hierarchical compositions and decompositions)
enable data-efficient learning, faster planning, and better generalization

Generalization to Novel Objects
Train Test Perturb Recover

Generalization to Novel States

TestTrain

Generalization to Novel Words Generalization to Novel Embodiments
Train Test

Generalization to Novel Goals

After

Set up a table for my breakfast.
Before

Train Test

Generalization to Novel Categories


